Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Cell Biochem Biophys ; 81(2): 205-229, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36820994

RESUMEN

Nordihydroguaiaretic acid (NDGA), a dicatechol and phytochemical polyphenolic antioxidant and an established inhibitor of human arachidonic acid (AA) 5-lipoxygenase (LOX) and 15-LOX, is widely used to ascertain the role of LOXs in vascular endothelial cell (EC) function. As the modulatory effect of NDGA on phospholipase D (PLD), an important lipid signaling enzyme in ECs, thus far has not been reported, here we have investigated the modulation of PLD activity and its regulation by NDGA in the bovine pulmonary artery ECs (BPAECs). NDGA induced the activation of PLD (phosphatidic acid formation) in cells in a dose- and time-dependent fashion that was significantly attenuated by iron chelator and antioxidants. NDGA induced the formation of reactive oxygen species (ROS) in cells in a dose- and time-dependent manner as evidenced from fluorescence microscopy and fluorimetry of ROS and electron paramagnetic resonance spectroscopy of oxygen radicals. Also, NDGA caused a dose-dependent loss of intracellular glutathione (GSH) in BPAECs. Protein tyrosine kinase (PTyK)-specific inhibitors significantly attenuated NDGA-induced PLD activation in BPAECs. NDGA also induced a dose- and time-dependent phosphorylation of tyrosine in proteins in cells. NDGA caused in situ translocation and relocalization of both PLD1 and PLD2 isoforms, in a time-dependent fashion. Cyclooxygenase (COX) inhibitors were ineffective in attenuating NDGA-induced PLD activation in BPAECs, thus ruling out the activation of COXs by NDGA. NDGA inhibited the AA-LOX activity and leukotriene C4 (LTC4) formation in cells. On the other hand, the 5-LOX-specific inhibitors, 5, 8, 11, 14-eicosatetraynoic acid and kaempferol, were ineffective in activating PLD in BPAECs. Antioxidants and PTyK-specific inhibitors effectively attenuated NDGA cytotoxicity in BPAECs. The PLD-specific inhibitor, 5-fluoro-2-indolyl deschlorohalopemide (FIPI), significantly attenuated and protected against the NDGA-induced PLD activation and cytotoxicity in BPAECs. For the first time, these results demonstrated that NDGA, the classic phytochemical polyphenolic antioxidant and LOX inhibitor, activated PLD causing cytotoxicity in ECs through upstream oxidant signaling and protein tyrosine phosphorylation.


Asunto(s)
Antioxidantes , Fosfolipasa D , Animales , Bovinos , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Fosforilación , Masoprocol/farmacología , Masoprocol/metabolismo , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxidantes , Células Endoteliales/metabolismo , Fosfolipasa D/metabolismo , Fosfolipasa D/farmacología , Inhibidores Enzimáticos/metabolismo , Pulmón/metabolismo , Tirosina/farmacología , Tirosina/metabolismo
2.
J Innate Immun ; 14(5): 555-568, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35367992

RESUMEN

Emerging data support the pivotal role of extracellular vesicles (EVs) in normal cellular physiology and disease conditions. However, despite their abundance, there is much less information about the lipid mediators carried in EVs, especially in the context of acute lung injury (ALI). Our data demonstrate that C57BL/6 mice subjected to intranasal Escherichia coli lipopolysaccharide (LPS)-induced ALI release, a higher number of EVs into the alveolar space, compared to saline-treated controls. EVs released during ALI originated from alveolar epithelial cells, macrophages, and neutrophils and carry a diverse array of lipid mediators derived from ω-3 and ω-6 polyunsaturated fatty acids (PUFA). The eicosanoids in EVs correlated with cellular levels of arachidonic acid, expression of cytosolic phospholipase A2, cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome epoxygenase p450 proteins in pulmonary macrophages. Furthermore, EVs from LPS-toll-like receptor 4 knockout (TLR4-/-) mice contained significantly lower amounts of COX and LOX catalyzed eicosanoids and ω-3 PUFA metabolites. More importantly, EVs from LPS-treated wild-type mice increased TNF-α release by macrophages and reduced alveolar epithelial monolayer barrier integrity compared to EVs from LPS-treated TLR4-/- mice. In summary, our study demonstrates for the first time that the EV carried PUFA metabolite profile in part depends on the inflammatory status of the lung macrophages and modulates pulmonary macrophage and alveolar epithelial cell function during LPS-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Vesículas Extracelulares , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Animales , Líquido del Lavado Bronquioalveolar , Vesículas Extracelulares/metabolismo , Lipidómica , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptor Toll-Like 4/metabolismo
3.
Cell Biochem Biophys ; 79(3): 669-694, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34244966

RESUMEN

Asthma is a heterogeneous pulmonary disease that has constantly increased in prevalence over the past several decades. Primary symptoms include airway constriction, airway hyperresponsiveness, and airway remodeling with additional symptoms such as shortness of breath, wheezing, and difficulty breathing. Allergic asthma involves chronic inflammation of the lungs, and the rise in its yearly diagnosis is potentially associated with the increased global consumption of foods similar to the western diet. Thus, there is growing interest into the link between diet and asthma symptoms, with mounting evidence for an important modulatory role for dietary lipids. Lipids can act as biological mediators in both a proinflammatory and proresolution capacity. Fatty acids play key roles in signaling and in the production of mediators in the allergic and inflammatory pathways. The western diet leads to a disproportionate ω-6:ω-3 ratio, with drastically increased ω-6 levels. To counteract this, consumption of fish and fish oil and the use of dietary oils with anti-inflammatory properties such as olive and sesame oil can increase ω-3 and decrease ω-6 levels. Increasing vitamin intake, lowering LDL cholesterol levels, and limiting consumption of oxidized lipids can help reduce the risk of asthma and the exacerbation of asthmatic symptoms. These dietary changes can be achieved by increasing intake of fruits, vegetables, nuts, oily fish, seeds, animal-related foods (eggs, liver), cheeses, grains, oats, and seeds, and decreasing consumption of fried foods (especially fried in reused oils), fast foods, and heavily processed foods.


Asunto(s)
Ácidos Grasos Omega-3
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...