Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Conserv Biol ; 38(2): e14162, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37551767

RESUMEN

Trade in pangolins is illegal, and yet tons of their scales and products are seized at various ports. These large seizures are challenging to process and comprehensively genotype for upstream provenance tracing and species identification for prosecution. We implemented a scalable DNA barcoding pipeline in which rapid DNA extraction and MinION sequencing were used to genotype a substantial proportion of pangolin scales subsampled from 2 record shipments seized in Singapore in 2019 (37.5 t). We used reference sequences to match the scales to phylogeographical regions of origin. In total, we identified 2346 cytochrome b (cytb) barcodes of white-bellied (Phataginus tricuspis) (from 1091 scales), black-bellied (Phataginus tetradactyla) (227 scales), and giant (Smutsia gigantea) (1028 scales) pangolins. Haplotype diversity was higher for P. tricuspis scales (121 haplotypes, 66 novel) than that for P. tetradactyla (22 haplotypes, 15 novel) and S. gigantea (25 haplotypes, 21 novel) scales. Of the novel haplotypes, 74.2% were likely from western and west-central Africa, suggesting potential resurgence of poaching and newly exploited populations in these regions. Our results illustrate the utility of extensively subsampling large seizures and outline an efficient molecular approach for rapid genetic screening that should be accessible to most forensic laboratories and enforcement agencies.


Revelación de la magnitud de la caza furtiva del pangolín africano mediante el genotipo extenso de nanoporos de ADN de escamas incautadas Resumen Aunque el mercado de pangolines es ilegal, se incautan toneladas de sus escamas y productos derivados en varios puertos comerciales. Es un reto procesar estas magnas incautaciones y obtener el genotipo completo para usarlo en la trazabilidad logística ascendente e identificación de la especie y así imponer sanciones. Implementamos una canalización escalable del código de barras de ADN en el cual usamos la extracción rápida de ADN y la secuenciación MinION para obtener el genotipo de una proporción sustancial de las escamas de pangolín submuestreadas en dos cargamentos incautados en 2019 en Singapur (37.5 t). Usamos secuencias referenciales para emparejar las escamas con las regiones filogeográficas de origen. Identificamos en total 2,346 códigos de citocromo b (cytb) del pangolín de vientre blanco (Phataginus tricuspis) (de 1,091 escamas), de vientre negro (P. tetradactyla) (227 escamas) y del pangolín gigante (Smutsia gigantea) (1,028 escamas). La diversidad de haplotipos fue mayor en las escamas de P. tricuspis (121 haplotipos, 66 nuevos) que en las de P. tetradactyla (22 haplotipos, 15 nuevos) y S. gigantea (25 haplotipos, 21 nuevos). De los haplotipos nuevos, el 74.2% probablemente provenía del occidente y centro­occidente de África, lo que sugiere un resurgimiento potencial de la caza furtiva y poblaciones recién explotadas en estas regiones. Nuestros resultados demuestran la utilidad de submuestrear extensivamente las grandes incautaciones y esboza una estrategia molecular eficiente para un análisis genético rápido que debería ser accesible para la mayoría de los laboratorios forenses y las autoridades de aplicación.


Asunto(s)
Nanoporos , Pangolines , Humanos , Animales , Genotipo , Conservación de los Recursos Naturales/métodos , ADN , Convulsiones
2.
Cortex ; 171: 113-135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37992508

RESUMEN

The processing of numerals as visual objects is supported by an "Inferior Temporal Numeral Area" (ITNA) in the bilateral inferior temporal gyri (ITG). Extant findings suggest some degree of hemispheric asymmetry in how the bilateral ITNAs process numerals. Pollack and Price (2019) reported such a hemispheric asymmetry by which a region in the left ITG was sensitive to digits during a visual search for a digit among letters, and a homologous region in the right ITG that showed greater digit sensitivity in individuals with higher calculation skills. However, the ITG regions were localized with separate analyses without directly contrasting their digit sensitivities and relation to calculation skills. So, the extent of and reasons for these functional asymmetries remain unclear. Here we probe whether the functional and representational properties of the ITNAs are asymmetric by applying both univariate and multivariate region-of-interest analyses to Pollack and Price's (2019) data. Contrary to the implications of the original findings, digit sensitivity did not differ between ITNAs, and digit sensitivity in both left and right ITNAs was associated with calculation skills. Representational similarity analyses revealed that the overall representational geometries of digits in the ITNAs were also correlated, albeit weakly, but the representational contents of the ITNAs were largely inconclusive. Nonetheless, we found a right lateralization in engagement in alphanumeric categorization, and that the right ITNA showed greater discriminability between digits and letters. Greater right lateralization of digit sensitivity and digit discriminability in the left ITNA were also related to higher calculation skills. Our findings thus suggest that the ITNAs may not be functionally identical and should be directly contrasted in future work. Our study also highlights the importance of within-individual comparisons for understanding hemispheric asymmetries, and analyses of individual differences and multivariate features to uncover effects that would otherwise be obscured by averages.


Asunto(s)
Lateralidad Funcional , Imagen por Resonancia Magnética , Humanos , Lóbulo Temporal , Análisis Multivariante , Individualidad , Mapeo Encefálico
3.
Mol Phylogenet Evol ; 190: 107955, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898294

RESUMEN

The numerous naturally-fragmented sky islands (SIs) in the Hengduan Mountains Region (HMR) of southwestern China constitute discontinuous landscapes where montane habitats are isolated by dry-hot valleys which have fostered exceptional species diversification and endemicity. However, studies documenting the crucial role of SI on the speciation dynamics of native freshwater organisms are scarce. Here we used a novel set of comprehensive genetic markers (24 nuclear DNA sequences and complete mitogenomes), morphological characters, and biogeographical information to reveal the evolutionary history and speciation mechanisms of a group of small-bodied montane potamids in the genus Tenuipotamon. Our results provide a robustly supported phylogeny, and suggest that the vicariance events of these montane crabs correlate well with the emergence of SIs due to the uplift of the HMR during the Late Oligocene. Furthermore, ancestrally, mountain ridges provided corridors for the dispersal of these montane crabs that led to the colonization of moist montane-specific habitats, aided by past climatic conditions that were the crucial determinants of their evolutionary history. The present results illustrated that the mechanisms isolating SIs are reinforced by the harsh-dry isolating climatic features of dry-hot valleys separating SIs and continue to affect local diversification. This offers insights into the causes of the high biodiversity and endemism shown by the freshwater crabs of the HMR-SIs in southwestern China.


Asunto(s)
Braquiuros , Animales , Filogenia , Braquiuros/genética , China , Biodiversidad , Agua Dulce
4.
Proc Natl Acad Sci U S A ; 120(51): e2309034120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38079550

RESUMEN

There is an urgent need for reliable data on the impacts of deforestation on tropical biodiversity. The city-state of Singapore has one of the most detailed biodiversity records in the tropics, dating back to the turn of the 19th century. In 1819, Singapore was almost entirely covered in primary forest, but this has since been largely cleared. We compiled more than 200 y of records for 10 major taxonomic groups in Singapore (>50,000 individual records; >3,000 species), and we estimated extinction rates using recently developed and novel statistical models that account for "dark extinctions," i.e., extinctions of undiscovered species. The estimated overall extinction rate was 37% (95% CI [31 to 42%]). Extrapolating our Singapore observations to a future business-as-usual deforestation scenario for Southeast Asia suggests that 18% (95% CI [16 to 22%]) of species will be lost regionally by 2100. Our extinction estimates for Singapore and Southeast Asia are a factor of two lower than previous estimates that also attempted to account for dark extinctions. However, we caution that particular groups such as large mammals, forest-dependent birds, orchids, and butterflies are disproportionately vulnerable.


Asunto(s)
Mariposas Diurnas , Animales , Singapur , Conservación de los Recursos Naturales , Extinción Biológica , Biodiversidad , Mamíferos
5.
Parasit Vectors ; 16(1): 432, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993967

RESUMEN

BACKGROUND: Babesia is a protozoal, tick-borne parasite that can cause life-threatening disease in humans, wildlife and domestic animals worldwide. However, in Southeast Asia, little is known about the prevalence and diversity of Babesia species present in wildlife and the tick vectors responsible for its transmission. Recently, a novel Babesia species was reported in confiscated Sunda pangolins (Manis javanica) in Thailand. To investigate the presence of this parasite in Singapore, we conducted a molecular survey of Babesia spp. in free-roaming Sunda pangolins and their main ectoparasite, the Amblyomma javanense tick. METHODS: Ticks and tissue samples were opportunistically collected from live and dead Sunda pangolins and screened using a PCR assay targeting the 18S rRNA gene of Babesia spp. DNA barcoding of the cytochrome oxidase subunit I (COI) mitochondrial gene was used to confirm the species of ticks that were Babesia positive. RESULTS: A total of 296 ticks and 40 tissue samples were obtained from 21 Sunda pangolins throughout the 1-year study period. Babesia DNA was detected in five A. javanense ticks (minimum infection rate = 1.7%) and in nine different pangolins (52.9%) located across the country. Phylogenetic analysis revealed that the Babesia 18S sequences obtained from these samples grouped into a single monophyletic clade together with those derived from Sunda pangolins in Thailand and that this evolutionarily distinct species is basal to the Babesia sensu stricto clade, which encompasses a range of Babesia species that infect both domestic and wildlife vertebrate hosts. CONCLUSIONS: This is the first report documenting the detection of a Babesia species in A. javanense ticks, the main ectoparasite of Sunda pangolins. While our results showed that A. javanense can carry this novel Babesia sp., additional confirmatory studies are required to demonstrate vector competency. Further studies are also necessary to investigate the role of other transmission pathways given the low infection rate of ticks in relation to the high infection rate of Sunda pangolins. Although it appears that this novel Babesia sp. is of little to no pathogenicity to Sunda pangolins, its potential to cause disease in other animals or humans cannot be ruled out.


Asunto(s)
Babesia , Parásitos , Garrapatas , Animales , Humanos , Babesia/genética , Pangolines , Amblyomma , Filogenia , Animales Salvajes
6.
Emerg Infect Dis ; 29(12): 2580-2583, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37708842

RESUMEN

We detected African swine fever virus (ASFV) from a wild boar in Singapore. In <72 hours, we confirmed and reported ASFV p72 genotype II, CD2v serogroup 8, and IGR-II variant by using a combination of real-time PCR and whole-genome sequencing. Continued biosurveillance will be needed to monitor ASFV in Singapore.


Asunto(s)
Virus de la Fiebre Porcina Africana , Sus scrofa , Animales , Porcinos , Singapur/epidemiología , Virus de la Fiebre Porcina Africana/genética , Genotipo , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Nat Ecol Evol ; 7(7): 1012-1021, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37202502

RESUMEN

Most of arthropod biodiversity is unknown to science. Consequently, it has been unclear whether insect communities around the world are dominated by the same or different taxa. This question can be answered through standardized sampling of biodiversity followed by estimation of species diversity and community composition with DNA barcodes. Here this approach is applied to flying insects sampled by 39 Malaise traps placed in five biogeographic regions, eight countries and numerous habitats (>225,000 specimens belonging to >25,000 species in 458 families). We find that 20 insect families (10 belonging to Diptera) account for >50% of local species diversity regardless of clade age, continent, climatic region and habitat type. Consistent differences in family-level dominance explain two-thirds of variation in community composition despite massive levels of species turnover, with most species (>97%) in the top 20 families encountered at a single site only. Alarmingly, the same families that dominate insect diversity are 'dark taxa' in that they suffer from extreme taxonomic neglect, with little signs of increasing activities in recent years. Taxonomic neglect tends to increase with diversity and decrease with body size. Identifying and tackling the diversity of 'dark taxa' with scalable techniques emerge as urgent priorities in biodiversity science.


Asunto(s)
Dípteros , Insectos , Animales , Ecosistema , Biodiversidad , Tamaño Corporal
8.
Mol Ecol ; 32(23): 6696-6709, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36799015

RESUMEN

The spread of nonindigenous species by shipping is a large and growing global problem that harms coastal ecosystems and economies and may blur coastal biogeographical patterns. This study coupled eukaryotic environmental DNA (eDNA) metabarcoding with dissimilarity regression to test the hypothesis that ship-borne species spread homogenizes port communities. We first collected and metabarcoded water samples from ports in Europe, Asia, Australia and the Americas. We then calculated community dissimilarities between port pairs and tested for effects of environmental dissimilarity, biogeographical region and four alternative measures of ship-borne species transport risk. We predicted that higher shipping between ports would decrease community dissimilarity, that the effect of shipping would be small compared to that of environment dissimilarity and shared biogeography, and that more complex shipping risk metrics (which account for ballast water and stepping-stone spread) would perform better. Consistent with our hypotheses, community dissimilarities increased significantly with environmental dissimilarity and, to a lesser extent, decreased with ship-borne species transport risks, particularly if the ports had similar environments and stepping-stone risks were considered. Unexpectedly, we found no clear effect of shared biogeography, and that risk metrics incorporating estimates of ballast discharge did not offer more explanatory power than simpler traffic-based risks. Overall, we found that shipping homogenizes eukaryotic communities between ports in predictable ways, which could inform improvements in invasive species policy and management. We demonstrated the usefulness of eDNA metabarcoding and dissimilarity regression for disentangling the drivers of large-scale biodiversity patterns. We conclude by outlining logistical considerations and recommendations for future studies using this approach.


Asunto(s)
ADN Ambiental , Ecosistema , ADN Ambiental/genética , Navíos , Biodiversidad , Agua , Monitoreo del Ambiente , Código de Barras del ADN Taxonómico
9.
Cereb Cortex ; 33(10): 6152-6170, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36587366

RESUMEN

A growing body of evidence suggests that in adults, there is a spatially consistent "inferior temporal numeral area" (ITNA) in the occipitotemporal cortex that appears to preferentially process Arabic digits relative to non-numerical symbols and objects. However, very little is known about why the ITNA is spatially segregated from regions that process other orthographic stimuli such as letters, and why it is spatially consistent across individuals. In the present study, we used diffusion-weighted imaging and functional magnetic resonance imaging to contrast structural and functional connectivity between left and right hemisphere ITNAs and a left hemisphere letter-preferring region. We found that the left ITNA had stronger structural and functional connectivity than the letter region to inferior parietal regions involved in numerical magnitude representation and arithmetic. Between hemispheres, the left ITNA showed stronger structural connectivity with the left inferior frontal gyrus (Broca's area), while the right ITNA showed stronger structural connectivity to the ipsilateral inferior parietal cortex and stronger functional coupling with the bilateral IPS. Based on their relative connectivity, our results suggest that the left ITNA may be more readily involved in mapping digits to verbal number representations, while the right ITNA may support the mapping of digits to quantity representations.


Asunto(s)
Mapeo Encefálico , Lóbulo Temporal , Adulto , Humanos , Vías Nerviosas/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen , Corteza Cerebral , Lóbulo Parietal/diagnóstico por imagen , Imagen por Resonancia Magnética
10.
Cladistics ; 38(2): 264-275, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34487362

RESUMEN

Halting biodiversity decline is one of the most critical challenges for humanity, but monitoring biodiversity is hampered by taxonomic impediments. One impediment is the large number of undescribed species (here called "dark taxon impediment") whereas another is caused by the large number of superficial species descriptions, that can only be resolved by consulting type specimens ("superficial description impediment"). Recently, Sharkey et al. (2021) proposed to address the dark taxon impediment for Costa Rican braconid wasps by describing 403 species based on COI barcode clusters ("BINs") computed by BOLD Systems. More than 99% of the BINs (387 of 390) were converted into species by assigning binominal names (e.g. BIN "BOLD:ACM9419" becomes Bracon federicomatarritai) and adding a minimal diagnosis (consisting only of a consensus barcode for most species). We here show that many of Sharkey et al.'s species are unstable when the underlying data are analyzed using different species delimitation algorithms. Add the insufficiently informative diagnoses, and many of these species will become the next "superficial description impediment" for braconid taxonomy because they will have to be tested and redescribed after obtaining sufficient evidence for confidently delimiting species. We furthermore show that Sharkey et al.'s approach of using consensus barcodes as diagnoses is not functional because it cannot be applied consistently. Lastly, we reiterate that COI alone is not suitable for delimiting and describing species, and voice concerns over Sharkey et al.'s uncritical use of BINs because they are calculated by a proprietary algorithm (RESL) that uses a mixture of public and private data. We urge authors, reviewers and editors to maintain high standards in taxonomy by only publishing new species that are rigorously delimited with open-access tools and supported by publicly available evidence.

11.
Biodivers Data J ; 10: e86192, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761616

RESUMEN

Background: Food webs summarise trophic interactions of the biotic components within an ecosystem, which can influence nutrient dynamics and energy flows, ultimately affecting ecosystem functions and services. Food webs represent the hypothesised trophic links between predators and prey and can be presented as empirical food webs, in which the relative strength/importance of the respective links are quantified. Some common methods used in food web research include gut content analysis (GCA) and stable isotope analysis (SIA). We combine both methods to construct empirical food web models as a basis for monitoring and studying ecosystem-level outcomes of natural (e.g. species turnover in fish assemblage) and intentional environmental change (e.g. biomanipulation). New information: We present 12 food webs from tropical reservoir communities in Singapore and summarise the topology of each with widely-used network indices (e.g. connectance, link density). Each reservoir was surveyed over 4-6 sampling occasions, during which, representative animal groups (i.e. fish species and taxonomic/functional groups of zooplankton and benthic macroinvertebrates) and all likely sources of primary production (i.e. macrophytes, periphyton, phytoplankton and riparian terrestrial plants) were collected. We analysed gut content in fishes and bulk isotope (d13C and d15N) profiles of all animals (i.e. fishes and invertebrates) and plants collected. Both sets of information were used to estimate the relative strength of trophic relationships using Bayesian mixing models. We document our protocol here, alongside a script in the R programming language for executing data management/analyses/visualisation procedures used in our study. These data can be used to glean insights into trends in inter- and intra-specific or guild interactions in analogous freshwater lake habitats.

12.
BMC Biol ; 19(1): 202, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521395

RESUMEN

BACKGROUND: The world's fast disappearing mangrove forests have low plant diversity and are often assumed to also have a species-poor insect fauna. We here compare the tropical arthropod fauna across a freshwater swamp and six different forest types (rain-, swamp, dry-coastal, urban, freshwater swamp, mangroves) based on 140,000 barcoded specimens belonging to ca. 8500 species. RESULTS: We find that the globally imperiled habitat "mangroves" is an overlooked hotspot for insect diversity. Our study reveals a species-rich mangrove insect fauna (>3000 species in Singapore alone) that is distinct (>50% of species are mangrove-specific) and has high species turnover across Southeast and East Asia. For most habitats, plant diversity is a good predictor of insect diversity, but mangroves are an exception and compensate for a comparatively low number of phytophagous and fungivorous insect species by supporting an unusually rich community of predators whose larvae feed in the productive mudflats. For the remaining tropical habitats, the insect communities have diversity patterns that are largely congruent across guilds. CONCLUSIONS: The discovery of such a sizeable and distinct insect fauna in a globally threatened habitat underlines how little is known about global insect biodiversity. We here show how such knowledge gaps can be closed quickly with new cost-effective NGS barcoding techniques.


Asunto(s)
Biodiversidad , Insectos , Plantas , Animales , Ecosistema , Bosques , Humedales
13.
BMC Biol ; 19(1): 217, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34587965

RESUMEN

BACKGROUND: DNA barcodes are a useful tool for discovering, understanding, and monitoring biodiversity which are critical tasks at a time of rapid biodiversity loss. However, widespread adoption of barcodes requires cost-effective and simple barcoding methods. We here present a workflow that satisfies these conditions. It was developed via "innovation through subtraction" and thus requires minimal lab equipment, can be learned within days, reduces the barcode sequencing cost to < 10 cents, and allows fast turnaround from specimen to sequence by using the portable MinION sequencer. RESULTS: We describe how tagged amplicons can be obtained and sequenced with the real-time MinION sequencer in many settings (field stations, biodiversity labs, citizen science labs, schools). We also provide amplicon coverage recommendations that are based on several runs of the latest generation of MinION flow cells ("R10.3") which suggest that each run can generate barcodes for > 10,000 specimens. Next, we present a novel software, ONTbarcoder, which overcomes the bioinformatics challenges posed by MinION reads. The software is compatible with Windows 10, Macintosh, and Linux, has a graphical user interface (GUI), and can generate thousands of barcodes on a standard laptop within hours based on only two input files (FASTQ, demultiplexing file). We document that MinION barcodes are virtually identical to Sanger and Illumina barcodes for the same specimens (> 99.99%) and provide evidence that MinION flow cells and reads have improved rapidly since 2018. CONCLUSIONS: We propose that barcoding with MinION is the way forward for government agencies, universities, museums, and schools because it combines low consumable and capital cost with scalability. Small projects can use the flow cell dongle ("Flongle") while large projects can rely on MinION flow cells that can be stopped and re-used after collecting sufficient data for a given project.


Asunto(s)
Biodiversidad , Biología Computacional , Código de Barras del ADN Taxonómico , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Programas Informáticos
14.
Animals (Basel) ; 11(3)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806564

RESUMEN

The firefly genus Luciola sensu McDermott contains 282 species that are distributed across major parts of Asia, Europe, Africa, Australia, and the Pacific islands. Due to phenotypic similarities, species identification using external morphological characters can be unreliable for this group. Consequently, decades of piecemeal taxonomic treatments have resulted in numerous erroneous and contentious classifications. Furthermore, our understanding of the group's evolutionary history is limited due to the lack of a robust phylogenetic framework that has also impeded efforts to stabilize its taxonomy. Here, we constructed molecular phylogenies of Luciola and its allies based on combined mitogenomes and Cytochrome c oxidase subunit 1 (COX1) sequences including a newly sequenced mitogenome of an unidentified taxon from Singapore. Our results showed that this taxon represents a distinct and hitherto undescribed evolutionary lineage that forms a clade with L. filiformis from Japan and L. curtithorax from China. Additionally, the Singaporean lineage can be differentiated from other congeners through several external and internal diagnostic morphological characters, and is thus described herein as a new species. Our phylogeny also strongly supported the paraphyly of Luciola with regard to L. cruciata and L. owadai, which were inferred to be more closely related to the genus Aquatica as opposed to other members of Luciola sensu stricto. The genus Hotaria was inferred as a derived clade within Luciola (sister to L. italica), supporting its status as a subgenus of Luciola instead of a distinct genus. This is the first time since 1909 that a new species of luminous firefly has been discovered in Singapore, highlighting the need for continued biodiversity research, even in small, well-studied and highly developed countries, such as Singapore.

15.
PLoS One ; 16(3): e0248480, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33724990

RESUMEN

Biological invasions have created detrimental impacts in freshwater ecosystems. As non-native freshwater species include economically beneficial, but also harmful, species, trait-based risk assessments can be used to identify and prevent the import of potentially invasive species. Freshwater fishes are one of the most evaluated freshwater taxa to date. However, such assessments have mostly been done in sub-temperate to temperate regions, with a general lack of such research in the tropics. In view of this knowledge gap, this study aims to determine if a different set of traits are associated with successful establishment of non-native fishes within the tropics. In tropical Southeast Asia, Singapore represents a suitable model site to perform an invasive species trait-based risk assessment for the tropical region given its susceptibility to the introduction and establishment of non-native freshwater fishes and lack of stringent fish import regulation. A quantitative trait-based risk assessment was performed using random forest to determine the relative importance of species attributes associated with the successful establishment of introduced freshwater fishes in Singapore. Species having a match in climate, prior invasion success, lower absolute fecundity, higher trophic level, and involvement in the aquarium trade were found to have higher establishment likelihood (as opposed to native distributional range and maximum size being among the commonly identified predictors in subtropical/temperate trait-based risk assessments). To minimize invasive risk, incoming freshwater fishes could be screened in future for such traits, allowing lists of prohibited or regulated species to be updated. The findings could also potentially benefit the development of invasive species action plans and inform management decisions in the Southeast Asian region. Considering a geographical bias in terms of having relatively less documentation of biological invasions in the tropics, particularly Asia, this study highlights the need to perform more of such risk assessments in other parts of the tropics.


Asunto(s)
Adaptación Biológica/genética , Peces/genética , Especies Introducidas , Sitios de Carácter Cuantitativo , Animales , Agua Dulce , Medición de Riesgo , Singapur , Especificidad de la Especie
16.
J Anim Ecol ; 90(6): 1433-1443, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33666230

RESUMEN

Studies have shown that food chain length is governed by interactions between species richness, ecosystem size and resource availability. While redundant trophic links may buffer impacts of species loss on food chain length, higher extinction risks associated with predators may result in bottom-heavy food webs with shorter food chains. The lack of consensus in earlier empirical studies relating species richness and food chain length reflects the need to account robustly for the factors described above. In response to this, we conducted an empirical study to elucidate impacts of land-use change on food chain length in tropical forest streams of Southeast Asia. Despite species losses associated with forest loss at our study areas, results from amino acid isotope analyses showed that food chain length was not linked to land use, ecosystem size or resource availability. Correspondingly, species losses did not have a significant effect on occurrence likelihoods of all trophic guilds except herbivores. Impacts of species losses were likely buffered by initial high levels of trophic redundancy, which declined with canopy cover. Declines in trophic redundancy were most drastic amongst invertivorous fishes. Declines in redundancy across trophic guilds were also more pronounced in wider and more resource-rich streams. While our study found limited evidence for immediate land-use impacts on stream food chains, the potential loss of trophic redundancy in the longer term implies increasing vulnerability of streams to future perturbations, as long as land conversion continues unabated.


Asunto(s)
Aminoácidos , Ecosistema , Animales , Cadena Alimentaria , Bosques , Isótopos
18.
Psychol Res ; 85(3): 1248-1271, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32060699

RESUMEN

Numerosity estimation performance (e.g., how accurate, consistent, or proportionally spaced (linear) numerosity-numeral mappings are) has previously been associated with math competence. However, the specific mechanisms that underlie such a relation is unknown. One possible mechanism is the mapping process between numerical sets and symbolic numbers (e.g., Arabic numerals). The current study examined two hypothesized mechanisms of numerosity-numeral mappings (item-based "associative" and holistic "structural" mapping) and their roles in the estimation-and-math relation. Specifically, mappings for small numbers (e.g., 1-10) are thought to be associative and resistant to calibration (e.g., feedback on accuracy of estimates), whereas holistic "structural" mapping for larger numbers (e.g., beyond 10) may be supported by flexibly aligning a numeral "response grid" (akin to a ruler) to an analog "mental number line" upon calibration. In 57 adults, we used pre- and post-calibration estimates to measure the range of continuous associative mappings among small numbers (e.g., a base range of associative mappings from 1 to 10), and obtained measures of math competence and delayed multiple-choice strategy reports. Consistent with previous research, uncalibrated estimation performance correlated with calculation competence, controlling for reading fluency and working memory. However, having a higher base range of associative mappings was not related to estimation performance or any math competence measures. Critically, discontinuity in calibration effects was typical at the individual level, which calls into question the nature of "holistic structural mapping". A parsimonious explanation to integrate previous and current findings is that estimation performance is likely optimized by dynamically constructing numerosity-numeral mappings through the use of multiple strategies from trial to trial.


Asunto(s)
Éxito Académico , Conceptos Matemáticos , Memoria a Corto Plazo/fisiología , Competencia Mental/psicología , Percepción Visual/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Estudiantes , Universidades , Adulto Joven
19.
Ecology ; 102(1): e03199, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32969053

RESUMEN

In Southeast Asia, biodiversity-rich forests are being extensively logged and converted to oil palm monocultures. Although the impacts of these changes on biodiversity are largely well documented, we know addition to samples we collected in 201 little about how these large-scale impacts affect freshwater trophic ecology. We used stable isotope analyses (SIA) to determine the impacts of land-use changes on the relative contribution of allochthonous and autochthonous basal resources in 19 stream food webs. We also applied compound-specific SIA and bulk-SIA to determine the trophic position of fish apex predators and meso-predators (invertivores and omnivores). There was no difference in the contribution of autochthonous resources in either consumer group (70-82%) among streams with different land-use type. There was no change in trophic position for meso-predators, but trophic position decreased significantly for apex predators in oil palm plantation streams compared to forest streams. This change in maximum food chain length was due to turnover in identity of the apex predator among land-use types. Disruption of aquatic trophic ecology, through reduction in food chain length and shift in basal resources, may cause significant changes in biodiversity as well as ecosystem functions and services. Understanding this change can help develop more focused priorities for mediating the negative impacts of human activities on freshwater ecosystems.


Asunto(s)
Cadena Alimentaria , Ríos , Animales , Biodiversidad , Ecosistema , Bosques , Humanos
20.
Netw Neurosci ; 4(3): 714-745, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32885123

RESUMEN

Studies of brain activity during number processing suggest symbolic and nonsymbolic numerical stimuli (e.g., Arabic digits and dot arrays) engage both shared and distinct neural mechanisms. However, the extent to which number format influences large-scale functional network organization is unknown. In this study, using 7 Tesla MRI, we adopted a network neuroscience approach to characterize the whole-brain functional architecture supporting symbolic and nonsymbolic number comparison in 33 adults. Results showed the degree of global modularity was similar for both formats. The symbolic format, however, elicited stronger community membership among auditory regions, whereas for nonsymbolic, stronger membership was observed within and between cingulo-opercular/salience network and basal ganglia communities. The right posterior inferior temporal gyrus, left intraparietal sulcus, and two regions in the right ventromedial occipital cortex demonstrated robust differences between formats in terms of their community membership, supporting prior findings that these areas are differentially engaged based on number format. Furthermore, a unified fronto-parietal/dorsal attention community in the nonsymbolic condition was fractionated into two components in the symbolic condition. Taken together, these results reveal a pattern of overlapping and distinct network architectures for symbolic and nonsymbolic number processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...