Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(5): e15945, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37223703

RESUMEN

Background: Oxidative stress is considered as one of the main causes of Parkinson's disease (PD), however the exact etiology of PD is still unknown. Although it is known that Proviral Integration Moloney-2 (PIM2) promotes cell survival by its ability to inhibit formation of reactive oxygen species (ROS) in the brain, the precise functional role of PIM2 in PD has not been fully studied yet. Objective: We investigated the protective effect of PIM2 against apoptosis of dopaminergic neuronal cells caused by oxidative stress-induced ROS damage by using the cell permeable Tat-PIM2 fusion protein in vitro and in vivo. Methods: Transduction of Tat-PIM2 into SH-SY5Y cells and apoptotic signaling pathways were determined by Western blot analysis. Intracellular ROS production and DNA damage was confirmed by DCF-DA and TUNEL staining. Cell viability was determined by MTT assay. PD animal model was induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and protective effects were examined using immunohistochemistry. Results: Transduced Tat-PIM2 inhibited the apoptotic caspase signaling and reduced the production of ROS induced by 1-methyl-4-phenylpyridinium (MPP+) in SH-SY5Y cells. Furthermore, we confirmed that Tat-PIM2 transduced into the substantia nigra (SN) region through the blood-brain barrier and this protein protected the Tyrosine hydroxylase-positive cells by observation of immunohistostaining. Tat-PIM2 also regulated antioxidant biomolecules such as SOD1, catalase, 4-HNE, and 8-OHdG which reduce the formation of ROS in the MPTP-induced PD mouse model. Conclusion: These results indicated that Tat-PIM2 markedly inhibited the loss of dopaminergic neurons by reducing ROS damage, suggesting that Tat-PIM2 might be a suitable therapeutic agent for PD.

2.
Neurochem Int ; 167: 105538, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37207854

RESUMEN

Oxidative stress plays a key role in the pathogenesis of neuronal injury, including ischemia. Ras-related nuclear protein (RAN), a member of the Ras superfamily, involves in a variety of biological roles, such as cell division, proliferation, and signal transduction. Although RAN reveals antioxidant effect, its precise neuroprotective mechanisms are still unclear. Therefore, we investigated the effects of RAN on HT-22 cell which were exposed to H2O2-induced oxidative stress and ischemia animal model by using the cell permeable Tat-RAN fusion protein. We showed that Tat-RAN transduced into HT-22 cells, and markedly inhibited cell death, DNA fragmentation, and reactive oxygen species (ROS) generation under oxidative stress. This fusion protein also controlled cellular signaling pathways, including mitogen-activated protein kinases (MAPKs), NF-κB, and apoptosis (Caspase-3, p53, Bax and Bcl-2). In the cerebral forebrain ischemia animal model, Tat-RAN significantly inhibited both neuronal cell death, and astrocyte and microglia activation. These results indicate that RAN significantly protects against hippocampal neuronal cell death, suggesting Tat-RAN will help to develop the therapies for neuronal brain diseases including ischemic injury.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Fármacos Neuroprotectores , Animales , Peróxido de Hidrógeno/farmacología , Proteína de Unión al GTP ran/metabolismo , Proteína de Unión al GTP ran/farmacología , Hipocampo/metabolismo , Isquemia/metabolismo , Estrés Oxidativo , Isquemia Encefálica/metabolismo , Apoptosis , Productos del Gen tat/genética , Productos del Gen tat/metabolismo , Productos del Gen tat/farmacología , Modelos Animales de Enfermedad , Lesiones Encefálicas/metabolismo , Fármacos Neuroprotectores/farmacología
3.
Biomedicines ; 11(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36979816

RESUMEN

Glutathione S-transferase pi (GSTpi) is a member of the GST family and plays many critical roles in cellular processes, including anti-oxidative and signal transduction. However, the role of anti-oxidant enzyme GSTpi against dopaminergic neuronal cell death has not been fully investigated. In the present study, we investigated the roles of cell permeable Tat-GSTpi fusion protein in a SH-SY5Y cell and a Parkinson's disease (PD) mouse model. In the 1-methyl-4-phenylpyridinium (MPP+)-exposed cells, Tat-GSTpi protein decreased DNA damage and reactive oxygen species (ROS) generation. Furthermore, this fusion protein increased cell viability by regulating MAPKs, Bcl-2, and Bax signaling. In addition, Tat-GSTpi protein delivered into the substantia nigra (SN) of mice brains protected dopaminergic neuronal cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD animal model. Our results indicate that the Tat-GSTpi protein inhibited cell death from MPP+- and MPTP-induced damage, suggesting that it plays a protective role during the loss of dopaminergic neurons in PD and that it could help to identify the mechanism responsible for neurodegenerative diseases, including PD.

4.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769090

RESUMEN

Glutathione S-transferase alpha 2 (GSTA2), a member of the glutathione S-transferase family, plays the role of cellular detoxification against oxidative stress. Although oxidative stress is related to ischemic injury, the role of GSTA2 against ischemia has not been elucidated. Thus, we studied whether GSTA2 prevents ischemic injury by using the PEP-1-GSTA2 protein which has a cell-permeable protein transduction domain. We revealed that cell-permeable PEP-1-GSTA2 transduced into HT-22 cells and markedly protected cell death via the inhibition of reactive oxygen species (ROS) production and DNA damage induced by oxidative stress. Additionally, transduced PEP-1-GSTA2 promoted mitogen-activated protein kinase (MAPK), and nuclear factor-kappaB (NF-κB) activation. Furthermore, PEP-1-GSTA2 regulated Bcl-2, Bax, cleaved Caspase-3 and -9 expression protein levels. An in vivo ischemic animal model, PEP-1-GSTA2, markedly prevented the loss of hippocampal neurons and reduced the activation of microglia and astrocytes. These findings indicate that PEP-1-GSTA2 suppresses hippocampal cell death by regulating the MAPK and apoptotic signaling pathways. Therefore, we suggest that PEP-1-GSTA2 will help to develop the therapies for oxidative-stress-induced ischemic injury.


Asunto(s)
Hipocampo , Estrés Oxidativo , Animales , Apoptosis , Hipocampo/metabolismo , Isquemia/metabolismo , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glutatión Transferasa/metabolismo
5.
FEBS J ; 290(11): 2923-2938, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36688733

RESUMEN

It is well known that oxidative stress is highly associated with Parkinson's disease (PD), and biliverdin reductase A (BLVRA) is known to have antioxidant properties against oxidative stress. In this study, we developed a novel N-acetylgalactosamine kinase (GK2) protein transduction domain (PTD) derived from adenosine A2A and fused with BLVRA to determine whether the GK2-BLVRA fusion protein could protect dopaminergic neuronal cells (SH-SY5Y) from oxidative stress in vitro and in vivo using a PD animal model. GK2-BLVRA was transduced into various cells, including SH-SY5Y cells, without cytotoxic effects, and this fusion protein protected SH-SY5Y cells and reduced reactive oxygen species production and DNA damage after 1-methyl-4-phenylpyridinium (MPP+ ) exposure. GK2-BLVRA suppressed mitogen-activated protein kinase (MAPK) activation and modulated apoptosis-related protein (Bcl-2, Bax, cleaved Caspase-3 and -9) expression levels. In the PD animal model, GK2-BLVRA transduced into the substantia nigra crossed the blood-brain barrier and markedly reduced dopaminergic neuronal cell death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animals. These results indicate that our novel PTD GK-2 is useful for the transduction of protein, and GK2-BLVRA exhibits a beneficial effect against dopaminergic neuronal cell death in vitro and in vivo, suggesting that BLVRA can be used as a therapeutic agent for PD.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Humanos , Ratones , Línea Celular Tumoral , Neuroblastoma/tratamiento farmacológico , Estrés Oxidativo , Apoptosis , Muerte Celular , Enfermedad de Parkinson/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
6.
BMB Rep ; 56(4): 234-239, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36571143

RESUMEN

Thioredoxin-like protein 1 (TXNL1), one of the thioredoxin superfamily known as redox-regulator, plays an essential in maintaining cell survival via various antioxidant and anti-apoptotic mechanisms. It is well known that relationship between ischemia and oxidative stress, however, the role of TXNL1 protein in ischemic damage has not been fully investigated. In the present study, we aimed to determine the protective role of TXNL1 against on ischemic injury in vitro and in vivo using cell permeable Tat-TXNL1 fusion protein. Transduced Tat-TXNL1 inhibited ROS production and cell death in H2O2-exposed hippocampal neuronal (HT-22) cells and modulated MAPKs and Akt activation, and pro-apoptotic protein expression levels in the cells. In an ischemia animal model, Tat-TXNL1 markedly decreased hippocampal neuronal cell death and the activation of astrocytes and microglia. These findings indicate that cell permeable Tat-TXNL1 protects against oxidative stress in vitro and in vivo ischemic animal model. Therefore, we suggest Tat-TXNL1 can be a potential therapeutic protein for ischemic injury. [BMB Reports 2023; 56(4): 234-239].


Asunto(s)
Lesiones Encefálicas , Peróxido de Hidrógeno , Animales , Peróxido de Hidrógeno/farmacología , Línea Celular , Apoptosis , Estrés Oxidativo , Productos del Gen tat/metabolismo , Isquemia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/metabolismo
7.
Nutrients ; 14(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35956389

RESUMEN

Glucosamine and chondroitin sulfate have been used as nutritional supplementation for joint tissues and osteoarthritis (OA). Biofermented glucosamine is of great interest in the supplement industry as an alternative source of glucosamine. The purpose of this study is to compare the pharmacokinetics of chitosan-derived glucosamine and biofermentation-derived glucosamine as nutritional supplementation. In a randomized, double-blind and cross-over study design, we recruited subjects of healthy men and women. The pharmacokinetics of glucosamine were examined after a single dose of glucosamine sulfate 2KCl (1500 mg) with two different sources of glucosamine (chitosan-derived glucosamine and biofermentation-derived glucosamine) to male and female subjects fitted with intravenous (iv) catheters for repeated blood sampling up to 8 h. According to plasma concentration-time curve of glucosamine after an oral administration of 1500 mg of glucosamine sulfate 2KCl, AUC0-8h and AUC0-∞ values of glucosamine following oral administration of chitosan-derived and biofermentation-derived glucosamine formulations were within the bioequivalence criteria (90% CI of ratios are within 0.8-1.25). The mean Cmax ratios for these two formulations (90% CI of 0.892-1.342) did not meet bioequivalence criteria due to high within-subject variability. There were no statistically significant effects of sequence, period, origin of glucosamine on pharmacokinetic parameters of glucosamine such as AUC0-8h, AUC0-∞, Cmax. Our findings suggest that biofermentation-derived glucosamine could be a sustainable source of raw materials for glucosamine supplement.


Asunto(s)
Quitosano , Glucosamina , Área Bajo la Curva , Densidad Ósea , Estudios Cruzados , Suplementos Dietéticos , Femenino , Humanos , Masculino
8.
Exp Ther Med ; 22(6): 1395, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34650643

RESUMEN

Thioredoxin 1 (Trx1) serves a central role in redox homeostasis. It is involved in numerous other processes, including oxidative stress and apoptosis. However, to the best of our knowledge, the role of Trx1 in inflammation remains to be explored. The present study investigated the function and mechanism of cell permeable fused Tat-Trx1 protein in macrophages and a mouse model. Transduction levels of Tat-Trx1 were determined via western blotting. Cellular distribution of transduced Tat-Trx1 was determined by fluorescence microscopy. 2',7'-Dichlorofluorescein diacetate and TUNEL staining were performed to determine the production of reactive oxygen species and DNA fragmentation. Protein and gene expression were measured by western blotting and reverse transcription-quantitative PCR (RT-qPCR), respectively. Effects of skin inflammation were determined using hematoxylin and eosin staining, changes in ear weight and ear thickness, and RT-qPCR in ear edema animal models. Transduced Tat-Trx1 inhibited lipopolysaccharide-induced cytotoxicity and activation of NF-κB, MAPK and Akt. Additionally, Tat-Trx1 markedly reduced the production of inducible nitric oxide synthase, cyclooxygenase-2, IL-1ß, IL-6 and TNF-α in macrophages. In a 12-O-tetradecanoylphorbol-13-acetate-induced mouse model, Tat-Trx1 reduced inflammatory damage by inhibiting inflammatory mediator and cytokine production. Collectively, these results demonstrated that Tat-Trx1 could exert anti-inflammatory effects by inhibiting the production of pro-inflammatory mediators and cytokines and by modulating MAPK signaling. Therefore, Tat-Trx1 may be a useful therapeutic agent for diseases induced by inflammatory damage.

9.
Assay Drug Dev Technol ; 19(7): 442-452, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34415786

RESUMEN

FK506-binding proteins (FKBPs) belong to the immunophilin family and are linked to various disease states, including the inflammatory response. The inhibition of cytokine and chemokine expression in addition to positive effects of FKBPs on corneal inflammation in animal models suggests that they may be used for ophthalmic delivery in the treatment of dry eye disease. To pass the effective barriers protecting eye tissues, testing the transduction domains of FKBPs is essential. However, monitoring their transduction efficiencies is not a simple task. The quantitative measurement of FKBP interactions was performed using a cell model with a specific G protein-coupled receptor, as FKBPs had been known to act at the inositol 1,4,5-trisphosphate receptor (IP3R) leading to the inhibition of intracellular calcium mobilization. Because of its luminescence amplitude and stability, human urotensin II receptor was expressed in aequorin parental cells to measure the action of selected FKBPs. This luminescence-based functional assay platform exhibited a high signal-to-background ratio of more than 100 and a Z' factor at 0.6204. As expected, changes in the sequence of the transduction domain affected the function of the FKBPs. The intracellular calcium mobilization assay with selected FKBPs represented a robust and reliable platform to screen initial candidates. Although the precise nature of the control that FKBPs exert on the IP3R is uncertain, this approach can be used to develop innovative anti-inflammatory treatments for dry eye disease by optimizing protein transduction domain sequences.


Asunto(s)
Proteínas de Unión a Tacrolimus , Tacrolimus , Secuencia de Aminoácidos , Animales , Calcio , Proteínas Portadoras , Humanos , Tacrolimus/farmacología , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
10.
Molecules ; 26(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206041

RESUMEN

Parkinson's disease (PD) is characterized mainly by the loss of dopaminergic neurons in the substantia nigra (SN) mediated via oxidative stress. Although glutaredoxin-1 (GLRX1) is known as one of the antioxidants involved in cell survival, the effects of GLRX1 on PD are still unclear. In this study, we investigated whether cell-permeable PEP-1-GLRX1 inhibits dopaminergic neuronal cell death induced by 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We showed that PEP-1-GLRX1 protects cell death and DNA damage in MPP+-exposed SH-SY5Y cells via the inhibition of MAPK, Akt, and NF-κB activation and the regulation of apoptosis-related protein expression. Furthermore, we found that PEP-1-GLRX1 was delivered to the SN via the blood-brain barrier (BBB) and reduced the loss of dopaminergic neurons in the MPTP-induced PD model. These results indicate that PEP-1-GLRX1 markedly inhibited the loss of dopaminergic neurons in MPP+- and MPTP-induced cytotoxicity, suggesting that this fusion protein may represent a novel therapeutic agent against PD.


Asunto(s)
Cisteamina/análogos & derivados , Neuronas Dopaminérgicas/citología , Glutarredoxinas/administración & dosificación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Péptidos/química , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , 1-Metil-4-fenilpiridinio/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Cisteamina/química , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glutarredoxinas/química , Glutarredoxinas/farmacología , Humanos , Masculino , Ratones , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Sustancia Negra/química
11.
Free Radic Biol Med ; 172: 418-429, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34175438

RESUMEN

Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and activated mTORC1 plays important roles for cellular survival in response to oxidative stress. However, the roles of PRAS40 in dopaminergic neuronal cell death have not yet been examined. Here, we examined the roles of Tat-PRAS40 in MPP+- and MPTP-induced dopaminergic neuronal cell death. Our results showed that Tat-PRAS40 effectively transduced into SH-SY5Y cells and inhibited DNA damage, ROS generation, and apoptotic signaling in MPP+-induced SH-SY5Y cells. Further, these protective mechanisms of Tat-PRAS40 protein display through phosphorylation of Tat-PRAS40, Akt and direct interaction with 14-3-3σ protein, but not via the mTOR-dependent signaling pathway. In a Parkinson's disease animal model, Tat-PRAS40 transduced into dopaminergic neurons in mouse brain and significantly protected against dopaminergic cell death by phosphorylation of Tat-PRAS40, Akt and interaction with 14-3-3σ protein. In this study, we demonstrated for the first time that Tat-PRAS40 directly protects against dopaminergic neuronal cell death. These results indicate that Tat-PRAS40 may provide a useful therapeutic agent against oxidative stress-induced dopaminergic neuronal cell death, which causes diseases such as PD.


Asunto(s)
Neuronas Dopaminérgicas , Estrés Oxidativo , Animales , Apoptosis , Muerte Celular , Ratones , Especies Reactivas de Oxígeno
12.
Int J Mol Med ; 47(2): 751-760, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33416093

RESUMEN

Aldose reductase (AR) is known to detoxify aldehydes and prevent oxidative stress. Although AR exerts antioxidant effects, the role of AR in Parkinson's disease (PD) remains unclear. The objective of the present study was to investigate the protective effects of AR protein against 1­methyl­4­phenylpyridinium (MPP+)­induced SH­SY5Y cell death and 1­methyl­4­phenyl­1,2,3,6­tetrahydropyridine (MPTP)­induced PD in a mouse model using the cell permeable Tat­AR fusion protein. The results revealed that when Tat­AR protein was transduced into SH­SY5Y cells, it markedly protected the cells against MPP+­induced death and DNA fragmentation. It also reduced the activation of mitogen-activated protein kinase (MAPKs) and regulated the expression levels of Bcl­2, Bax and caspase­3. Immunohistochemical analysis revealed that when Tat­AR protein was transduced into the substantia nigra (SN) of mice with PD, it markedly inhibited dopaminergic neuronal cell death. Therefore, Tat­AR may be useful as a therapeutic protein for PD.


Asunto(s)
Aldehído Reductasa/metabolismo , Neuronas Dopaminérgicas/enzimología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Estrés Oxidativo , Sustancia Negra/enzimología , Aldehído Reductasa/genética , Animales , Muerte Celular , Línea Celular Tumoral , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/genética , Humanos , Intoxicación por MPTP/enzimología , Intoxicación por MPTP/genética , Masculino , Ratones
13.
Biomol Ther (Seoul) ; 29(3): 321-330, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33436533

RESUMEN

Oxidative stress plays a crucial role in the development of neuronal disorders including brain ischemic injury. Thioredoxin 1 (Trx1), a 12 kDa oxidoreductase, has anti-oxidant and anti-apoptotic functions in various cells. It has been highly implicated in brain ischemic injury. However, the protective mechanism of Trx1 against hippocampal neuronal cell death is not identified yet. Using a cell permeable Tat-Trx1 protein, protective mechanism of Trx1 against hydrogen peroxide-induced cell death was examined using HT-22 cells and an ischemic animal model. Transduced Tat-Trx1 markedly inhibited intracellular ROS levels, DNA fragmentation, and cell death in H2O2-treatment HT-22 cells. Tat-Trx1 also significantly inhibited phosphorylation of ASK1 and MAPKs in signaling pathways of HT-22 cells. In addition, Tat-Trx1 regulated expression levels of Akt, NF-κB, and apoptosis related proteins. In an ischemia animal model, Tat-Trx1 markedly protected hippocampal neuronal cell death and reduced astrocytes and microglia activation. These findings indicate that transduced Tat-Trx1 might be a potential therapeutic agent for treating ischemic injury.

14.
BMB Rep ; 53(11): 582-587, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32684242

RESUMEN

It is well known that oxidative stress participates in neuronal cell death caused production of reactive oxygen species (ROS). The increased ROS is a major contributor to the development of ischemic injury. Indoleamine 2,3-dioxygenase 1 (IDO-1) is involved in the kynurenine pathway in tryptophan metabolism and plays a role as an anti-oxidant. However, whether IDO-1 would inhibit hippocampal cell death is poorly known. Therefore, we explored the effects of cell permeable Tat-IDO-1 protein against oxidative stress-induced HT-22 cells and in a cerebral ischemia/reperfusion injury model. Transduced Tat-IDO-1 reduced cell death, ROS production, and DNA fragmentation and inhibited mitogen-activated protein kinases (MAPKs) activation in H2O2 exposed HT-22 cells. In the cerebral ischemia/ reperfusion injury model, Tat-IDO-1 transduced into the brain and passing by means of the blood-brain barrier (BBB) significantly prevented hippocampal neuronal cell death. These results suggest that Tat-IDO-1 may present an alternative strategy to improve from the ischemic injury. [BMB Reports 2020; 53(11): 582-587].


Asunto(s)
Isquemia Encefálica/fisiopatología , Indolamina-Pirrol 2,3,-Dioxigenasa/farmacología , Daño por Reperfusión/terapia , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Gerbillinae , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Isquemia/metabolismo , Masculino , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo
15.
Int J Mol Sci ; 21(8)2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32290442

RESUMEN

Reactive oxygen species (ROS) is major risk factor in neuronal diseases including ischemia. Although biliverdin reductase A (BLVRA) plays a pivotal role in cell survival via its antioxidant function, its role in hippocampal neuronal (HT-22) cells and animal ischemic injury is not clearly understood yet. In this study, the effects of transducible fusion protein Tat-BLVRA on H2O2-induced HT-22 cell death and in an animal ischemia model were investigated. Transduced Tat-BLVRA markedly inhibited cell death, DNA fragmentation, and generation of ROS. Transduced Tat-BLVRA inhibited the apoptosis and mitogen activated protein kinase (MAPK) signaling pathway and it passed through the blood-brain barrier (BBB) and significantly prevented hippocampal cell death in an ischemic model. These results suggest that Tat-BLVRA provides a possibility as a therapeutic molecule for ischemia.


Asunto(s)
Apoptosis/efectos de los fármacos , Productos del Gen tat , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/etiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Línea Celular , Modelos Animales de Enfermedad , Productos del Gen tat/genética , Gerbillinae , Peróxido de Hidrógeno/metabolismo , Masculino , Fármacos Neuroprotectores/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/genética
16.
Free Radic Biol Med ; 135: 68-78, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30818058

RESUMEN

Cytokine-induced apoptosis inhibitor 1 (CIAPIN1) protein is widely expressed in the brain and it is known that this protein is involved in cell survival including dopaminergic neuronal cells. Oxidative stress is known as one of the major causes of degenerative diseases including ischemia. In this study, we investigated the effect of CIAPIN1 protein on hippocampal neuronal (HT-22) cell damage induced by hydrogen peroxide (H2O2) and in an animal model of ischemia using Tat-CIAPIN1 fusion protein which can transduce into cells. Tat-CIAPIN1 protein transduced into HT-22 cells and significantly inhibited cell death, DNA fragmentation, and reactive oxygen species (ROS) generation. Also, Tat-CIAPIN1 protein enhances cell survival via the regulation of Akt, MAPK, NF-κB and apoptotic signaling pathways in the H2O2 treated cells. In an ischemic animal model, Tat-CIAPIN1 protein transduced into the brain and protected neuronal cell death of hippocampal CA1 region induced by ischemic insult. In conclusion, we demonstrated that Tat-CIAPIN1 protein has protective effects against hippocampal neuronal cell damage induced by ischemic injury, suggesting that Tat-CIAPIN1 protein may provide a potential therapeutic agent for ischemia.


Asunto(s)
Isquemia Encefálica/genética , Productos del Gen tat/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedades Neurodegenerativas/genética , Animales , Apoptosis/genética , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Isquemia Encefálica/patología , Isquemia Encefálica/prevención & control , Supervivencia Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Terapia Genética , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Peróxido de Hidrógeno/metabolismo , Péptidos y Proteínas de Señalización Intracelular/uso terapéutico , Ratones , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/prevención & control , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Biochimie ; 156: 158-168, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30352250

RESUMEN

Parkinson's disease (PD), a neurodegenerative disorder, is characterized by a loss of dopaminergic neurons in the substantia nigra (SN) of the brain and it is well known that the pathogenesis of PD is related to a number of risk factors including oxidative stress. Antioxidant 1 (ATOX1) protein plays a crucial role in various diseases as an antioxidant and chaperone. In this study, we determined whether Tat-ATOX1 could protect against 1-methyl-4-phenylpyridinium ion (MPP+)-induced SH-SY5Y cell death and in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal model of PD. In the MPP+ exposed SH-SY5Y cells, Tat-ATOX1 markedly inhibited cell death and toxicities. In addition, Tat-ATOX1 markedly suppressed the activation of Akt and mitogen activated protein kinases (MAPKs) as well as cleavage of caspase-3 and Bax expression levels. In a MPTP-induced animal model, Tat-ATOX1 transduced into brain and protected dopaminergic neuronal cell loss. Taken together, Tat-ATOX1 inhibits dopaminergic neuronal death through the suppression of MAPKs and apoptotic signal pathways. Thus, Tat-ATOX1 represents a potential therapeutic protein drug candidate for PD.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Proteínas de Transporte de Catión , Intoxicación por MPTP/prevención & control , Metalochaperonas , Chaperonas Moleculares , Proteínas Recombinantes de Fusión , Animales , Proteínas de Transporte de Catión/biosíntesis , Proteínas de Transporte de Catión/genética , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proteínas Transportadoras de Cobre , Humanos , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/patología , Masculino , Metalochaperonas/biosíntesis , Metalochaperonas/genética , Ratones , Chaperonas Moleculares/biosíntesis , Chaperonas Moleculares/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Transducción Genética
18.
Immunobiology ; 223(11): 709-717, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30049418

RESUMEN

Phosphoprotein enriched in astrocytes 15 (PEA15) plays a multi-functional role in neuronal cell survival, however the effects of PEA15 against inflammation have not been investigated yet. To examine the effects of PEP-1-PEA15 protein against lipopolysaccharide (LPS)-induced inflammatory responses in Raw 264.7 cells and in a 12-O-tetradecanoylphobol 13-acetate (TPA)-induced mouse model, we constructed and purified PEP-1-PEA15 protein, which can transduce into cells or tissues. PEP-1-PEA15 inhibited LPS-induced damage in cells including that caused by reactive oxygen species (ROS) production and DNA fragmentation. PEP-1-PEA15 also significantly suppressed activation of mitogen activated protein kinases (MAPKs), pro-inflammatory mediator proteins and various cytokines. In a TPA-induced mouse ear edema model, PEP-1-PEA15 significantly reduced ear weight and thickness as well as MAPK activation as well as the expression levels of COX-2, iNOS, IL-6, IL-1ß, and TNF-α. These results demonstrated that PEP-1-PEA15 showed anti-inflammatory effect in cells and animal model suggesting that this fusion protein protects cells or skin tissues from inflammatory response.


Asunto(s)
Cisteamina/análogos & derivados , Edema/inmunología , Inflamación/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/inmunología , Péptidos/metabolismo , Fosfoproteínas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Cisteamina/metabolismo , Citocinas/metabolismo , Fragmentación del ADN , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/inmunología , Masculino , Ratones , Ratones Endogámicos ICR , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Acetato de Tetradecanoilforbol/inmunología
19.
BMB Rep ; 51(7): 362-367, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29936932

RESUMEN

A major feature of type 1 diabetes mellitus (T1DM) is hyperglycemia and dysfunction of pancreatic ß-cells. In a previous study, we have shown that Tat-DJ-1 protein inhibits pancreatic RINm5F ß-cell death caused by oxidative stress. In this study, we examined effects of Tat-DJ-1 protein on streptozotocin (STZ)-induced diabetic mice. Wild type (WT) Tat-DJ-1 protein transduced into pancreas where it markedly inhibited pancreatic ß-cell destruction and regulated levels of serum parameters including insulin, alkaline phosphatase (ALP), and free fatty acid (FFA) secretion. In addition, transduced WT Tat-DJ-1 protein significantly inhibited the activation of NF-κB and MAPK (ERK and p38) expression as well as expression of COX-2 and iNOS in STZ exposed pancreas. In contrast, treatment with C106A mutant Tat-DJ-1 protein showed no protective effects. Collectively, our results indicate that WT Tat-DJ-1 protein can significantly ameliorate pancreatic tissues in STZ-induced diabetes in mice. [BMB Reports 2018; 51(7): 362-367].


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Productos del Gen tat/genética , Sustancias Protectoras/uso terapéutico , Proteína Desglicasa DJ-1/genética , Proteínas Recombinantes de Fusión/uso terapéutico , Fosfatasa Alcalina/sangre , Animales , Ciclooxigenasa 2/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ácidos Grasos no Esterificados/sangre , Insulina/sangre , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo/efectos de los fármacos , Páncreas/metabolismo , Sustancias Protectoras/farmacología , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Mol Med Rep ; 18(2): 2216-2228, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29916538

RESUMEN

Oxidative stress is known to be a primary risk factor for neuronal diseases. Glutaredoxin (GLRX)­1, a redox­regulator of the thioredoxin superfamily, is known to exhibit an important role in cell survival via various cellular functions. However, the precise roles of GLRX1 in brain ischemia are still not fully understood. The present study investigated whether transduced PEP­1­GLRX1 protein has protective effects against oxidative stress in cells and in an animal model. Transduced PEP­1­GLRX1 protein increased HT­22 cell viability under oxidative stress and this fusion protein significantly reduced intracellular reactive oxygen species and levels of DNA damage. In addition, PEP­1­GLRX1 protein regulated RAC­a serine/threonine­protein kinase and mitogen­activated protein kinase signaling, in addition to apoptotic signaling including B cell lymphoma (Bcl)­2, Bcl­2 associated X, apoptosis regulator, pro­caspase­9 and p53 expression levels. In an ischemic animal model, it was verified that PEP­1­GLRX1 transduced into the Cornu Ammonis 1 region of the animal brain, where it markedly protected against ischemic injury. These results indicate that PEP­1­GLRX1 attenuates neuronal cell death resulting from oxidative stress in vitro and in vivo. Therefore, PEP­1­GLRX1 may exhibit a beneficial role in the treatment of neuronal disorders, including ischemic injury.


Asunto(s)
Cisteamina/análogos & derivados , Glutarredoxinas/farmacología , Hipocampo/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Péptidos/farmacología , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Línea Celular , Cisteamina/farmacología , Hipocampo/patología , Ratones , Neuronas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...