Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 4(18): 3824-3831, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36133349

RESUMEN

An extreme ultraviolet (EUV) lithography pellicle is used to physically protect a mask from contaminants during the EUV exposure process and needs to have a high EUV transmittance. The EUV pellicle should be fabricated using a freestanding thin film with several tens of nanometer thickness in an area of 110 × 142 mm2, which is a challenging task. Here, we propose a peel-off approach to directly detach the nanometer-thick graphite film (NGF)/Ni film from SiO2/Si wafer and significantly shorten the etching time of the Ni film. Combined with the residue-damage-free transfer method that used camphor as a supporting layer, we successfully fabricated a large-area (100 × 100 mm2) NGF pellicle with a thickness of ∼20 nm, and an EUV transmittance of ∼87.2%.

2.
Nanotechnology ; 32(46)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34340219

RESUMEN

An extreme ultraviolet (EUV) pellicle consists of freestanding thin films on a frame; these films are tens of nanometers in thickness and can include Si, SiNX, or graphite. Nanometer-thick graphite films (NGFs), synthesized via chemical vapor deposition on a metal catalyst, are used as a pellicle material. The most common method to transfer NGFs onto a substrate or a frame is to use polymethyl methacrylate (PMMA) as a supporting layer. However, this PMMA-mediated technique involves several disadvantages in term of manufacturing NGF EUV pellicles. When removing the PMMA using acetone or O2plasma, defects or deflections can occur in the NGFs. Furthermore, PMMA residues are generally present on large-area NGFs. In this study, a transfer method using camphor instead of PMMA as the supporting layer was developed to overcome these problems. After the camphor/NGF was formed on the frame, camphor was removed via sublimation in an atmosphere of ethanol vapor. This study investigated the deposition and sublimation of camphor, and confirmed that no residue was present and no deflection or defects were observed in the NGFs. Thus, a large-area NGF pellicle was successfully fabricated using the camphor transfer process.

3.
J Nanosci Nanotechnol ; 15(11): 8642-6, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26726567

RESUMEN

We fabricated electrolyte-dielectric-metal (EDM) device incorporating a high-k Al2O3 sensing membrane from a porous anodic aluminum oxide (AAO) using a two step anodizing process for pH sensors. In order to change the properties of the AAO template, the crystallizing temperature was varied from 400 degrees C to 700 degrees C over 2 hours. The structural properties were observed by field emission scanning electron microscopy (FE-SEM). The pH sensitivity increased with an increase in the crystallizing temperature from 400 degrees C to 600 degrees C. However at 700 degrees C, deformation occurred. The porous AAO sensor with a crystallizing temperature of 600 degrees C displayed the good sensitivity and long-term stability and the values were 55.7 mV/pH and 0.16 mV/h, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...