Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 32(3): e4568, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36660887

RESUMEN

Cyclic-di-nucleotide-based secondary messengers regulate various physiological functions, including stress responses in bacteria. Cyclic diadenosine monophosphate (c-di-AMP) has recently emerged as a crucial second messenger with implications in processes including osmoregulation, antibiotic resistance, biofilm formation, virulence, DNA repair, ion homeostasis, and sporulation, and has potential therapeutic applications. The contrasting activities of the enzymes diadenylate cyclase (DAC) and phosphodiesterase (PDE) determine the equilibrium levels of c-di-AMP. Although c-di-AMP is suspected of playing an essential role in the pathophysiology of bacterial infections and in regulating host-pathogen interactions, the mechanisms of its regulation remain relatively unexplored in mycobacteria. In this report, we biochemically and structurally characterize the c-di-AMP synthase (MsDisA) from Mycobacterium smegmatis. The enzyme activity is regulated by pH and substrate concentration; conditions of significance in the homoeostasis of c-di-AMP levels. Substrate binding stimulates conformational changes in the protein, and pApA and ppApA are synthetic intermediates detectable when enzyme efficiency is low. Unlike the orthologous Bacillus subtilis enzyme, MsDisA does not bind to, and its activity is not influenced in the presence of DNA. Furthermore, we have determined the cryo-EM structure of MsDisA, revealing asymmetry in its structure in contrast to the symmetric crystal structure of Thermotoga maritima DisA. We also demonstrate that the N-terminal minimal region alone is sufficient and essential for oligomerization and catalytic activity. Our data shed light on the regulation of mycobacterial DisA and possible future directions to pursue.


Asunto(s)
Proteínas Bacterianas , Mycobacterium smegmatis , Mycobacterium smegmatis/genética , Proteínas Bacterianas/química , Fosfatos de Dinucleósidos/química , Fosfatos de Dinucleósidos/metabolismo , Bacillus subtilis/genética
2.
Mol Neurobiol ; 59(12): 7370-7392, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36181660

RESUMEN

The Fragile-X Mental Retardation Protein (FMRP) is an RNA binding protein that regulates translation of mRNAs essential for synaptic development and plasticity. FMRP interacts with a specific set of mRNAs, aids in their microtubule-dependent transport and regulates their translation through its association with ribosomes. However, the biochemical role of FMRP's domains in forming neuronal granules and associating with microtubules and ribosomes is currently undefined. We report that the C-terminus domain of FMRP is sufficient to bind to ribosomes akin to the full-length protein. Furthermore, the C-terminus domain alone is essential and responsible for FMRP-mediated neuronal translation repression. However, dendritic distribution of FMRP and its microtubule association is favored by the synergistic combination of FMRP domains rather than individual domains. Interestingly, we show that the phosphorylation of hFMRP at Serine-500 is important in modulating the dynamics of translation by controlling ribosome association. This is a fundamental mechanism governing the size and number of FMRP puncta that contain actively translating ribosomes. Finally through the use of pathogenic mutations, we emphasize the hierarchical contribution of FMRP's domains in translation regulation.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Humanos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/metabolismo , Ribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Microtúbulos/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Biosíntesis de Proteínas
3.
Elife ; 102021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34622778

RESUMEN

Progenitors of the thoracic tracheal system of adult Drosophila (tracheoblasts) arrest in G2 during larval life and rekindle a mitotic program subsequently. G2 arrest is dependent on ataxia telangiectasia mutated and rad3-related kinase (ATR)-dependent phosphorylation of checkpoint kinase 1 (Chk1) that is actuated in the absence of detectable DNA damage. We are interested in the mechanisms that activate ATR/Chk1 (Kizhedathu et al., 2018; Kizhedathu et al., 2020). Here we report that levels of reactive oxygen species (ROS) are high in arrested tracheoblasts and decrease upon mitotic re-entry. High ROS is dependent on expression of Duox, an H2O2 generating dual oxidase. ROS quenching by overexpression of superoxide dismutase 1, or by knockdown of Duox, abolishes Chk1 phosphorylation and results in precocious proliferation. Tracheae deficient in Duox, or deficient in both Duox and regulators of DNA damage-dependent ATR/Chk1 activation (ATRIP/TOPBP1/claspin), can induce phosphorylation of Chk1 in response to micromolar concentrations of H2O2 in minutes. The findings presented reveal that H2O2 activates ATR/Chk1 in tracheoblasts by a non-canonical, potentially direct, mechanism.


Asunto(s)
Proteínas de Ciclo Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Oxidasas Duales/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Proteínas de Drosophila/metabolismo , Oxidasas Duales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Nucleic Acids Res ; 46(5): 2678-2689, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29401259

RESUMEN

Eukaryotic translation initiation is tightly regulated, requiring a set of conserved initiation factors (eIFs). Translation of a capped mRNA depends on the trimeric eIF4F complex and eIF4B to load the mRNA onto the 43S pre-initiation complex comprising 40S and initiation factors 1, 1A, 2, 3 and 5 as well as initiator-tRNA. Binding of the mRNA is followed by mRNA scanning in the 48S pre-initiation complex, until a start codon is recognised. Here, we use a reconstituted system to prepare human 48S complexes assembled on capped mRNA in the presence of eIF4B and eIF4F. The highly purified h-48S complexes are used for cross-linking/mass spectrometry, revealing the protein interaction network in this complex. We report the electron cryo-microscopy structure of the h-48S complex at 6.3 Å resolution. While the majority of eIF4B and eIF4F appear to be flexible with respect to the ribosome, additional density is detected at the entrance of the 40S mRNA channel which we attribute to the RNA-recognition motif of eIF4B. The eight core subunits of eIF3 are bound at the 40S solvent-exposed side, as well as the subunits eIF3d, eIF3b and eIF3i. elF2 and initiator-tRNA bound to the start codon are present at the 40S intersubunit side. This cryo-EM structure represents a molecular snap-shot revealing the h-48S complex following start codon recognition.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Modelos Moleculares , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Microscopía por Crioelectrón , Factor 3 de Iniciación Eucariótica/química , Humanos , Espectrometría de Masas , Iniciación de la Cadena Peptídica Traduccional , Caperuzas de ARN/química , ARN Mensajero/química , ARN Ribosómico 18S/química , Proteínas Ribosómicas/química
5.
EMBO J ; 36(20): 2968-2986, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-28899899

RESUMEN

Nonsense-mediated mRNA decay (NMD) is a cellular surveillance pathway that recognizes and degrades mRNAs with premature termination codons (PTCs). The mechanisms underlying translation termination are key to the understanding of RNA surveillance mechanisms such as NMD and crucial for the development of therapeutic strategies for NMD-related diseases. Here, we have used a fully reconstituted in vitro translation system to probe the NMD proteins for interaction with the termination apparatus. We discovered that UPF3B (i) interacts with the release factors, (ii) delays translation termination and (iii) dissociates post-termination ribosomal complexes that are devoid of the nascent peptide. Furthermore, we identified UPF1 and ribosomes as new interaction partners of UPF3B. These previously unknown functions of UPF3B during the early and late phases of translation termination suggest that UPF3B is involved in the crosstalk between the NMD machinery and the PTC-bound ribosome, a central mechanistic step of RNA surveillance.


Asunto(s)
Terminación de la Cadena Péptídica Traduccional , Proteínas de Unión al ARN/metabolismo , Línea Celular , Humanos , Degradación de ARNm Mediada por Codón sin Sentido
6.
Nucleic Acids Res ; 44(16): 7766-76, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27418677

RESUMEN

Poly(A)-binding protein (PABP) is a major component of the messenger RNA-protein complex. PABP is able to bind the poly(A) tail of mRNA, as well as translation initiation factor 4G and eukaryotic release factor 3a (eRF3a). PABP has been found to stimulate translation initiation and to inhibit nonsense-mediated mRNA decay. Using a reconstituted mammalian in vitro translation system, we show that PABP directly stimulates translation termination. PABP increases the efficiency of translation termination by recruitment of eRF3a and eRF1 to the ribosome. PABP's function in translation termination depends on its C-terminal domain and its interaction with the N-terminus of eRF3a. Interestingly, we discover that full-length eRF3a exerts a different mode of function compared to its truncated form eRF3c, which lacks the N-terminal domain. Pre-association of eRF3a, but not of eRF3c, with pre-termination complexes (preTCs) significantly increases the efficiency of peptidyl-tRNA hydrolysis by eRF1. This implicates new, additional interactions of full-length eRF3a with the ribosomal preTC. Based on our findings, we suggest that PABP enhances the productive binding of the eRF1-eRF3 complex to the ribosome, via interactions with the N-terminal domain of eRF3a which itself has an active role in translation termination.


Asunto(s)
Codón de Terminación/metabolismo , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Humanos , Hidrólisis , Modelos Biológicos , Unión Proteica , Aminoacil-ARN de Transferencia
7.
Biochemistry ; 52(50): 9047-58, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24251594

RESUMEN

Vertebrate ßγ-crystallins belonging to the ßγ-crystallin superfamily lack functional Ca(2+)-binding sites, while their microbial homologues do not; for example, three out of four sites in lens γ-crystallins are disabled. Such loss of Ca(2+)-binding function in non-lens ßγ-crystallins from mammals (e.g., AIM1 and Crybg3) raises the possibility of a trade-off in the evolutionary extinction of Ca(2+)-binding. We test this hypothesis by reconstructing ancestral Ca(2+)-binding motifs (transforming disabled motifs into the canonical ones) in the lens γB-crystallin by introducing minimal sets of mutations. Upon incorporation of serine at the fifth position in the N/D-N/D-X-X-S/T(5)-S motif, which endowed a domain with microbial characteristics, a decreased domain stability was observed. Ca(2+) further destabilized the N-terminal domain (NTD) and its serine mutants profoundly, while the incorporation of a C-terminal domain (CTD) nullified this destabilization. On the other hand, Ca(2+)-induced destabilization of the CTD was not rescued by the introduction of an NTD. Of note, only one out of four sites is functional in the NTD of γB-crystallins responsible for weak Ca(2+) binding, but the deleterious effects of Ca(2+) are overcome by introduction of a CTD. The rationale for the onset of cataracts by certain mutations, such as R77S, which have not been clarified by structural means, could be explained by this work. The findings presented here shed light on the evolutionary innovations in terms of the functional loss of Ca(2+)-binding and acquisition of a bilobed domain, besides imparting additional advantages (e.g., protection from light) required for specialized functions.


Asunto(s)
Calcio/metabolismo , beta-Cristalinas/metabolismo , gamma-Cristalinas/metabolismo , Sitios de Unión , Calcio/química , Calorimetría , Modelos Moleculares , Estabilidad Proteica , Espectrometría de Fluorescencia , Temperatura , beta-Cristalinas/química , beta-Cristalinas/aislamiento & purificación , gamma-Cristalinas/química , gamma-Cristalinas/aislamiento & purificación
8.
J Biol Chem ; 286(51): 43891-43901, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21949186

RESUMEN

The topologically similar ßγ-crystallins that are prevalent in all kingdoms of life have evolved for high innate domain stability to perform their specialized functions. The evolution of stability and its control in ßγ-crystallins that possess either a canonical (mostly from microorganisms) or degenerate (principally found in vertebrate homologues) Ca2+-binding motif is not known. Using equilibrium unfolding of ßγ-crystallin domains (26 wild-type domains and their mutants) in apo- and holo-forms, we demonstrate the presence of a stability gradient across these members, which is attained by the choice of residues in the (N/D)(N/D)XX(S/T)S Ca2+-binding motif. The occurrence of a polar, hydrophobic, or Ser residue at the 1st, 3rd, or 5th position of the motif is likely linked to a higher domain stability. Partial conversion of a microbe-type domain (with a canonical Ca2+-binding motif) to a vertebrate-type domain (with a degenerate Ca2+-binding motif) by mutating serine to arginine/lysine disables the Ca2+-binding but significantly augments its stability. Conversely, stability is compromised when arginine (in a vertebrate-type disabled domain) is replaced by serine (as a microbe type). Our results suggest that such conversions were acquired as a strategy for desired stability in vertebrate members at the cost of Ca2+-binding. In a physiological context, we demonstrate that a mutation such as an arginine to serine (R77S) mutation in this motif of γ-crystallin (partial conversion to microbe-type), implicated in cataracts, decreases the domain stability. Thus, this motif acts as a "central tuning knob" for innate as well as Ca2+-induced gain in stability, incorporating a stability gradient across ßγ-crystallin members critical for their specialized functions.


Asunto(s)
Calcio/química , beta-Cristalinas/química , gamma-Cristalinas/química , Secuencia de Aminoácidos , Animales , Arginina/química , Bovinos , Clostridium/metabolismo , Flavobacterium/metabolismo , Methanosarcina/metabolismo , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Rhodospirillum centenum/metabolismo , Homología de Secuencia de Aminoácido , Serina/química , Termodinámica , Vibrio cholerae/metabolismo , beta-Cristalinas/genética , gamma-Cristalinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...