Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 326: 138363, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36907486

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are halogenated organic compounds that are among the major pollutants of water, and there is an urgent need for their removal. This work compared the application of two techniques, i.e., photocatalytic reaction (PCR) and photolysis (PL), for 2,2,4,4- tetrabromodiphenyl ether (BDE-47) degradation. Although a limited degradation of BDE-47 was observed by photolysis (LED/N2), photocatalytic oxidation by using TiO2/LED/N2 proved to be effective in the degradation of BDE-47. The use of a photocatalyst enhanced the extent of BDE-47 degradation by around 10% at optimum conditions in anaerobic systems. Experimental results were systematically validated through modeling with three new and powerful Machine Learning (ML) approaches, including Gradient Boosted Decision Tree (GBDT), Artificial Neural Network (ANN), and Symbolic Regression (SBR). Four statistical criteria (Coefficient of Determination (R2), Root Mean Square Error (RMSE), Average Relative Error (ARER), and Absolute Error (ABER)) were calculated for model validation. Among the applied models, the developed GBDT was the desirable model for predicting the remaining concentration (Ce) of BDE-47 for both processes. Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD) results confirmed that BDE-47 mineralization required additional time than its degradation in both PCR and PL systems. The kinetic study demonstrated that BDE-47 degradation for both processes followed the pseudo-first-order form of the Langmuir-Hinshelwood (L-H) model. More importantly, the calculated electrical energy consumption of photolysis was shown to be ten percent higher than that for photocatalysis, possibly due to the higher irradiation time required in direct photolysis, which in turn increases electricity consumption. This study is useful in proposing a feasible and promising treatment process for the degradation of BDE-47.


Asunto(s)
Éter , Éteres Difenilos Halogenados , Éteres Difenilos Halogenados/análisis , Cinética , Fotólisis , Éteres de Etila
2.
Chemosphere ; 296: 133688, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35074327

RESUMEN

Industrial expansion and increased water consumption have created water scarcity concerns. Meanwhile, conventional wastewater purification methods have failed to degrade recalcitrant pollutants efficiently. The present review paper discusses the recent advances and challenges in photocatalytic processes applied for industrial effluents treatment, with respect to phenolic compounds degradation. Key operational parameters including the catalyst loading, light intensity, initial pollutants concentration, pH, and type and concentrations of oxidants are evaluated and discussed. Compared to the other examined controlling parameters, pH has the highest effect on the photo-oxidation of contaminants by means of the photocatalyst ionization degree and surface charge. Furthermore, major phenolic compounds derived from industrial sources are comprehensively presented and the applicability of photocatalytic processes and the barriers in practical applications, including high energy demand, technical challenges, photocatalyst stability, and recyclability have been explored. The importance of energy consumption and operational costs for realistic large-scale processes are also discussed. Finally, research gaps in this area and the suggested direction for improving degradation efficiencies in industrial applications are presented. In the light of these premises, selective degradation processes in real water matrices such as untreated sewage are proposed.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Catálisis , Oxidación-Reducción , Fenoles/química , Aguas del Alcantarillado/química , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
3.
Environ Technol ; 42(6): 932-940, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31378146

RESUMEN

This study presents effective ammonium removal from nitrite-free ammonium-rich synthetic wastewater through combined partial nitrification (PN) and anammox processes in a multi-zone hybrid airlift bioreactor (BioCAST). Removal efficiencies of ammonia-nitrogen and total nitrogen up to 85.6% and 81.2%, respectively, were achieved shortly after the start-up of bioreactor treating the nitrite-free ammonium-rich synthetic wastewater with ammonium concentrations of 10-350 mg/L. The hybrid (containing suspended and attached biomass) and multi-zone design of the bioreactor with different dissolved oxygen levels, along with the inoculation with anammox-containing sludge were the main factors in the successful start-up of the bioreactor. Nitrate accumulation problem due to the fast growth of nitrite-oxidizing bacteria in the bioreactor was controlled by two operating strategies including lowering the HRT from 4 days to 2 days and controlling the dissolved oxygen concentration in the aerobic zone of the bioreactor between 0.9 and 1.2 mg/L. Moreover, the 16S rRNA gene analysis confirmed that the partial nitrification of ammonia to nitrite occurred by Nitrosomonas sp. primarily in the suspended biomass in the aerobic zone, while the conversion of nitrite to N2 occurred by Candidatus Brocadia species in the anoxic zone. This study showed the effective removal of ammonium from a nitrite-free wastewater by providing a proper HRT, controlling the DO concentration between 0.9 and 1.2 mg/L in the aerobic zone, and preventing biomass loss using both suspended and attached microbial cultures in different zones of the bioreactor.


Asunto(s)
Nitrificación , Aguas Residuales , Reactores Biológicos , Nitritos , Nitrógeno , Oxidación-Reducción , Oxígeno , ARN Ribosómico 16S/genética , Aguas del Alcantarillado
4.
Environ Sci Pollut Res Int ; 26(25): 25573-25582, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31267396

RESUMEN

This paper presents the treatment of a nitrite-limited wastewater by partial nitrification/anammox process under different dissolved oxygen (DO) concentrations of < 1.2 mg/L, < 0.5 mg/L, and 0 mg/L, and at temperatures of 35 to 27 °C in a pilot-scale single-stage hybrid bioreactor (BioCAST). The effect of operational parameters on microbial community structure and composition has also been investigated during the 1-year experimental period. Ammonium removal efficiencies of 73 ± 19% at 35-32 °C and 87 ± 9% at 29-27 °C were obtained from a synthetic nitrite-limited wastewater with ammonium concentration of 350-500 mg/L (175-250 g m-3 d-1). The adaptation of bacteria to a lower temperature (27 °C) and lower free ammonia concentrations at 27 °C was showed to be key factors leading to the optimal nitrite production by aerobic ammonium-oxidizing bacteria (AOB). No nitrite accumulation was observed due to the effective distribution and transfer of nitrite produced by the AOB in the aerobic zone to the microaerophilic/anoxic zones. The fast enrichment of Candidatus species in the suspended biomass in the anoxic zone at temperatures of 35-30 °C and in the attached biofilm in the microaerophilic zone (DO < 0.5 mg/L) at 29-27 °C suggests that the growth media (e.g., suspended biomass vs attached biofilm) had a minor effect on the diversity of microbial community in this bioreactor. This study supports the effective treatment of nitrite-limited wastewater with ammonium concentrations of < 500 mg/L by partial nitrification/anammox process at 35-27 °C in a single-stage hybrid bioreactor by adjusting the DO concentration to < 0.5 mg/L and by providing longer retention times for aerobic (AOB) and anammox bacteria in the biofilm, which resulted in the long-term suppression of nitrite-oxidizing bacteria (NOB).


Asunto(s)
Amoníaco/química , Compuestos de Amonio/química , Reactores Biológicos/microbiología , Nitritos/química , Aguas Residuales/microbiología , Bacterias/crecimiento & desarrollo , Biopelículas , Biomasa , Nitrificación , Temperatura , Aguas Residuales/química
5.
J Hazard Mater ; 375: 86-95, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31054533

RESUMEN

Zinc hydroxyfluoride (Zn(OH)F) sonocatalyst was prepared by using solvothermal method and was characterized by using various techniques. The sonocatalytic degradation of ampicillin (AMP) in water by sonolysis, bare ZnO and Zn(OH)F was investigated in terms of AMP removal, mineralization, detoxification of solution, and remaining by-products at the end of process. Results revealed that the sonocatalytic performance of Zn(OH)F was significantly greater than that of bare ZnO. Under the optimum conditions, the removal percentage of AMP by Zn(OH)F was ∼97% after 90 min reaction, while 51% and 36% COD and TOC removal were achieved after 120 min reaction, respectively. The study of Zn(OH)F stability revealed that the degradation efficiency of AMP was reduced by only 5% even after being reused for four experiments. The toxicity of initial and treated solutions was assessed by using agar-well diffusion method and ToxTrak™ toxicity assay, and the results indicated a substantial reduction in the toxicity of solution after the treatment. The formation of some by-products during the sonolysis and sonocatalysis was evaluated by LC-HR-MS/MS method. LC-HR-MS/MS results showed that the concentration of most by-products, which were produced after 90 min treatment by US/Zn(OH)F process, was considerably lower than those obtained during sonolysis and US/ZnO processes.


Asunto(s)
Ampicilina/química , Antibacterianos/química , Fluoruros/química , Nanopartículas/química , Compuestos de Zinc/química , Ampicilina/toxicidad , Antibacterianos/toxicidad , Catálisis , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Fluoruros/toxicidad , Concentración de Iones de Hidrógeno , Nanopartículas/toxicidad , Sonicación , Ondas Ultrasónicas , Compuestos de Zinc/toxicidad
6.
J Hazard Mater ; 359: 516-526, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30086522

RESUMEN

The degradation of sulfamethoxazole (SMX) by a synthesized hierarchical magnetic zinc oxide based composite ZnO@g-C3N4 (FZG) was examined. Hierarchical FZG was synthesized by using Fe3O4 nanoparticle as the magnetic core and urea as the precursor for in situ growth of g-C3N4 on the surface of petal-like ZnO. The effect of catalyst dosage (0.4-0.8 g/L), solution pH (3-11) and airflow rate (0.5-2.5 L/min) on the SMX removal efficiency and the optimization of process was studied by response surface methodology (RSM) based on central composite design (CCD). The obtained RSM model with R2 = 0.9896 showed a satisfactory correlation between the predicted values and experimental results of SMX removal. Under the optimum conditions, i.e. 0.65 g/L photocatalyst concentration, pH = 5.6 and airflow rate = 1.89 L/min, 90.4% SMX removal was achieved after 60 min reaction. The first-order kinetic rate constant for SMX removal by using FZG was 0.0384 min-1 while the rate constant by commercial ZnO was 0.0165 min-1. Moreover, under the optimum conditions, about 64% COD removal and 45% TOC removal and a considerable reduction in toxicity were observed. The analysis of generated intermediates during the photocatalytic degradation of SMX was conducted by LC-HR-MS/MS method and a degradation pathway was proposed.

7.
Chemosphere ; 205: 463-474, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29705637

RESUMEN

Herein, a petal-like photocatalyst, Fe3O4-ZnO@g-C3N4 (FZG) with different g-C3N4 to ZnO ratios was synthesized with hierarchical structure. The FZG1 photocatalyst, having the weight ratio of 1:1 for the initial urea and Fe3O4-ZnO (Fe-ZnO), presented the highest sulfamethoxazole (SMX) degradation rate of 0.0351 (min-1), which was 2.6 times higher than that of pristine ZnO. Besides the facile separation, the performance of photocatalyst was improved due to the function of iron oxide as an electron acceptor that reduced the electron/hole recombination rate. The coating of g-C3N4 on the Fe-ZnO surface not only acted as a protective layer for ZnO against photocorrosion, but it also enhanced the photocatalytic activity of the catalyst for SMX degradation through the heterojunction mechanism. By using the FZG1 photocatalyst, 95% SMX removal was obtained after 90 min reaction, while 47% COD and 30% TOC removal were achieved after 60 min treatment under a low energy-consuming UV lamp (10 W). Moreover, a substantial reduction in the solution toxicity was shown after the treatment, as compared with the SMX solution before treatment. The LC-HR-MS/MS analysis results showed that the concentration of most detected by-products produced after 90 min reaction by FZG1 was considerably lower than those obtained using other synthesized photocatalysts. By performing radical scavenging experiments, OH° radical was found to be the major reactive species. The FZG1 photocatalyst also displayed excellent reusability in five cycles and the leaching of zinc and iron ions was reduced by 54% and ∼100%, respectively, after coating Fe-ZnO with g-C3N4.


Asunto(s)
Ecotoxicología , Nitrilos/química , Sulfametoxazol/aislamiento & purificación , Catálisis , Corrosión , Compuestos Férricos/química , Procesos Fotoquímicos , Espectrometría de Masas en Tándem , Óxido de Zinc/química
8.
Water Res ; 132: 241-251, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29331911

RESUMEN

The presence of antibiotics in water bodies has received increasing attention since they are continuously introduced and detected in the environment and may cause unpredictable environmental hazards and risks. The photocatalytic degradation of sulfamethoxazole (SMX) by ZnO in the presence of fluoride ions (F-ZnO) was evaluated. The effects of operating parameters on the efficiency of SMX removal were investigated by using response surface methodology (RSM). Under the optimum condition, i.e. photocatalyst dosage = 1.48 g/L, pH 4.7, airflow rate = 2.5 L/min and the concentration of fluoride ions = 2.505 mM, about 97% SMX removal was achieved by F-ZnO after 30 min of reaction. The mechanism of reactions, COD removal efficiency and reaction kinetics were also investigated under optimum operating conditions. In addition, about 85% COD reduction was obtained after 90 min photocatalytic reaction. The pseudo-first-order kinetics rate constants for the photodegradation of SMX were found to be 0.099, 0.058 and 0.048 min-1 by F-ZnO, ZnO and TiO2 (P25), respectively. The figure-of-merit electrical energy per order (EEO) was used for estimating the electrical energy efficiency, which was shown to be considerably lower than the energy consumption for the reported research on removal of SMX by photocatalytic degradation under UV irradiation. Toxicity assays were conducted by measuring the inhibition percentage (PI) towards E. coli bacteria strain and by agar well diffusion method. The results showed that after 30 min of reaction, the toxicity of the treated solutions by all photocatalysts fell within the non-toxic range; however, the reduction in toxicity by F-ZnO was faster than those by ZnO and P25. Despite the positive effects of surface fluorination of ZnO on the SMX and COD removal and reaction kinetics, its lower stability compared to ZnO and P25 in the repeated experiments gave rise to some doubts about its performance from a practical point of view.


Asunto(s)
Sulfametoxazol/química , Eliminación de Residuos Líquidos/métodos , Óxido de Zinc/química , Antibacterianos/química , Catálisis , Escherichia coli/efectos de los fármacos , Fluoruros/química , Concentración de Iones de Hidrógeno , Cinética , Fotólisis , Pruebas de Toxicidad/métodos , Rayos Ultravioleta , Aguas Residuales/química , Aguas Residuales/toxicidad , Contaminantes Químicos del Agua/química
9.
Chemosphere ; 174: 665-688, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28199944

RESUMEN

The presence of emerging contaminants such as pharmaceuticals in natural waters has raised increasing concern due to their frequent appearance and persistence in the aquatic ecosystem and the threat to health and safety of aquatic life, even at trace concentrations. Conventional water treatment processes are known to be generally inadequate for the elimination of these persistent contaminants. Therefore, the use of advanced oxidation processes (AOPs) which are able to efficiently oxidize organic pollutants has attracted a great amount of attention. The main limitation of AOPs lies in their high operating costs associated with the consumption of energy and chemicals. Fenton-based processes, which utilize nontoxic and common reagents and potentially can exploit solar energy, will considerably reduce the removal cost of recalcitrant contaminants. The disadvantages of homogeneous Fenton processes, such as the generation of high amounts of iron-containing sludge and limited operational range of pH, have prompted much attention to the use of heterogeneous Fenton processes. In this review, the impacts of some controlling parameters including the H2O2 and catalyst dosage, solution pH, initial contaminants concentrations, temperature, type of catalyst, intensity of irradiation, reaction time and feeding mode on the removal efficiencies of hetero/homogeneous Fenton processes are discussed. In addition, the combination of Fenton-type processes with biological systems as the pre/post treatment stages in pilot-scale operations is considered. The reported experimental results obtained by using Fenton and photo-Fenton processes for the elimination of pharmaceutical contaminants are also compiled and evaluated.


Asunto(s)
Peróxido de Hidrógeno/química , Hierro/química , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/aislamiento & purificación , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Agua/química , Animales , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/toxicidad , Hierro/metabolismo , Hierro/toxicidad
10.
J Environ Manage ; 158: 146-57, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25982876

RESUMEN

Pulp-and-paper mills produce various types of contaminants and a significant amount of wastewater depending on the type of processes used in the plant. Since the generated wastewaters can be potentially polluting and very dangerous, they should be treated in wastewater treatment plants before being released to the environment. This paper reviews different wastewater treatment processes used in the pulp-and-paper industry and compares them with respect to their contaminant removal efficiencies and the extent of greenhouse gas (GHG) emission. It also evaluates the impact of operating parameters on the performance of different treatment processes. Two mathematical models were used to estimate GHG emission in common biological treatment processes used in the pulp-and-paper industry. Nutrient removal processes and sludge treatment are discussed and their associated GHG emissions are calculated. Although both aerobic and anaerobic biological processes are appropriate for wastewater treatment, their combination known as hybrid processes showed a better contaminant removal capacity at higher efficiencies under optimized operating conditions with reduced GHG emission and energy costs.


Asunto(s)
Gases/química , Efecto Invernadero , Residuos Industriales , Papel , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Humanos
11.
J Hazard Mater ; 254-255: 364-371, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23643960

RESUMEN

The removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) at concentrations of 960 ± 38 to 2400 ± 96 mg/L, 143 ± 9 to 235 ± 15 mg/L and 25 ± 2 to 57 ± 4 mg/L, respectively, from the separated liquid phase of hog manure by the multi-zone BioCAST technology is discussed. Despite the inhibitory effect of hog waste toward microbial activities, removal efficiencies up to 89.2% for COD, 69.2% for TN and 47.6% for TP were obtained during 185 d of continuous operation. The free ammonia inhibition was postulated to be responsible for the steady reduction of COD and TP removal with the increase of TN/TP ratio from 3.6 to 5.8. On the contrary, the increase of COD/TN ratio from 4.8 to 14.1 improved the removal of all contaminants. Nitrogen removal did not show any dependence on the COD/TP ratio, despite the steady increase of COD and TP removal with this ratio in the range of 19.3-50.6. The removal efficiencies of organic and inorganic contaminants increased progressively owing to the adaptation of microbial biomass, resulting from the presence of suspended biomass in the mixed liquor that circulated continuously between the three zones of aerobic, microaerophilic and anoxic, as well as the attached biomass immobilized inside the aerobic zone.


Asunto(s)
Reactores Biológicos , Carbono/metabolismo , Estiércol , Nitrógeno/metabolismo , Fósforo/metabolismo , Crianza de Animales Domésticos , Animales , Análisis de la Demanda Biológica de Oxígeno , Biomasa , Daphnia/efectos de los fármacos , Residuos Industriales/efectos adversos , Porcinos , Administración de Residuos/métodos
12.
Bioprocess Biosyst Eng ; 36(8): 1043-52, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23142846

RESUMEN

The hydrodynamic characteristics and the overall volumetric oxygen transfer coefficient of a new multi-environment bioreactor which is an integrated part of a wastewater treatment system, called BioCAST, were studied. This bioreactor contains several zones with different environmental conditions including aerobic, microaerophilic and anoxic, designed to increase the contaminant removal capacity of the treatment system. The multi-environment bioreactor is designed based on the concept of airlift reactors where liquid is circulated through the zones with different environmental conditions. The presence of openings between the aerobic zone and the adjacent oxygen-depleted microaerophilic zone changes the hydrodynamic properties of this bioreactor compared to the conventional airlift designs. The impact of operating and process parameters, notably the hydraulic retention time (HRT) and superficial gas velocity (U(G)), on the hydrodynamics and mass transfer characteristics of the system was examined. The results showed that liquid circulation velocity (V(L)), gas holdup (ε) and overall volumetric oxygen transfer coefficient (k(L)a(L)) increase with the increase of superficial gas velocity (U(G)), while the mean circulation time (t(c)) decreases with the increase of superficial gas velocity. The mean circulation time between the aerobic zone (riser) and microaerophilic zone (downcomer) is a stronger function of the superficial gas velocity for the smaller openings (1/2 in.) between the two zones, while for the larger opening (1 in.) the mean circulation time is almost independent of U(G) for U(G) ≥ 0.023 m/s. The smaller openings between the two zones provide higher mass transfer coefficient and better zone generation which will contribute to improved performance of the system during treatment operations.


Asunto(s)
Reactores Biológicos , Oxígeno/química , Movimientos del Aire , Bacterias/química , Ambiente , Diseño de Equipo , Gases , Hidrodinámica , Evaluación de Procesos y Resultados en Atención de Salud , Aguas del Alcantarillado , Temperatura , Factores de Tiempo
13.
Environ Sci Pollut Res Int ; 20(3): 1858-69, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23179218

RESUMEN

Greenhouse gas (GHG) emission in wastewater treatment plants of the pulp-and-paper industry was estimated by using a dynamic mathematical model. Significant variations were shown in the magnitude of GHG generation in response to variations in operating parameters, demonstrating the limited capacity of steady-state models in predicting the time-dependent emissions of these harmful gases. The examined treatment systems used aerobic, anaerobic, and hybrid-anaerobic/aerobic-biological processes along with chemical coagulation/flocculation, anaerobic digester, nitrification and denitrification processes, and biogas recovery. The pertinent operating parameters included the influent substrate concentration, influent flow rate, and temperature. Although the average predictions by the dynamic model were only 10 % different from those of steady-state model during 140 days of operation of the examined systems, the daily variations of GHG emissions were different up to ± 30, ± 19, and ± 17 % in the aerobic, anaerobic, and hybrid systems, respectively. The variations of process variables caused fluctuations in energy generation from biogas recovery by ± 6, ± 7, and ± 4 % in the three examined systems, respectively. The lowest variations were observed in the hybrid system, showing the stability of this particular process design.


Asunto(s)
Efecto Invernadero , Industrias/estadística & datos numéricos , Modelos Estadísticos , Papel , Purificación del Agua/estadística & datos numéricos , Aerobiosis , Anaerobiosis , Reactores Biológicos/estadística & datos numéricos , Dióxido de Carbono/análisis , Efecto Invernadero/estadística & datos numéricos , Aguas Residuales/estadística & datos numéricos , Purificación del Agua/métodos
14.
Bioprocess Biosyst Eng ; 36(10): 1339-52, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23086548

RESUMEN

The theoretical and experimental aspects of the hydrodynamics and mixing in a new multi-environment bioreactor that uses the air-lift design were investigated. This study focused on the mixing characteristics, residence time distribution, liquid circulation between three zones of aerobic, microaerophilic and anoxic, and liquid displacement in the bioreactor at influent flow rates of 720-1,450 L/day and air flow rates of 15-45 L/min. The theoretical analysis of liquid displacement led to the estimation of the specific rate of liquid discharge from the bioreactor at any given influent flow rate, and the number of liquid circulations between various bioreactor zones before the discharge of a given quantity of wastewater. The ratio of mean residence time to the overall hydraulic retention time (t m/HRT) decreased with the increase of air flow rate at any given influent flow rate, and approached unity at higher air flow rates. Mixing was characterized in terms of the axial dispersion coefficient and Bodenstein number, demonstrating a linear relationship with the superficial gas velocity. A correlation was developed between the Bodenstein number and the Froude number. The study of liquid circulation between the zones showed that less than 1.5 % of the circulating liquid escapes circulation at each cycle and flows towards the outer clarifier, while the percentage of escaped liquid decreases with increasing air flow rate at a given influent flow rate. The specific rate of liquid discharge from the bioreactor increased from 0.19 to 0.69 h⁻¹ with the increase of air and influent flow rates from 15 to 45 L/min and 500 to 1,450 L/day, respectively. Under the examined operating conditions, mixed liquor circulates between 364 and 1,698 times between the aerobic, microaerophilic and anoxic zones before 99 % of its original volume is replaced by the influent wastewater.


Asunto(s)
Reactores Biológicos , Modelos Teóricos , Aguas Residuales
15.
Bioresour Technol ; 107: 78-86, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22209135

RESUMEN

This study investigated the formation and evolution of biofilm on a fixed cylindrical structure wrapped in geotextile, in a multi-zone wastewater treatment system called BioCAST. The organic, nitrogen and phosphorus loading rates of (OLR) 0.95-1.86 g COD/(m(3)d), (NLR) 0.02-0.08 kg N/(m(3)d), and (PLR) 0.014-0.02 kg P/(m(3)d), were applied. The results demonstrated high removal efficiencies of carbon, nitrogen and phosphorus, reaching 98.9%, 98.3% and 94.1%, respectively, after 250 d of operation. The biofilm biomass showed a fast formation (reaching 54.2g/L) and maximum phosphorus content of about 7% (dry basis). Biofilm demonstrated the ability to remove phosphorus, and its characteristics correlated with nitrogen and phosphorus removal rates. The geotextile material with filamentous structure causing rapid attachment and formation of biofilm can solve many problems encountered in conventional attached-growth wastewater treatment systems such as slow start-up, low reactor biomass content and low capacity to handle high organic loading rates.


Asunto(s)
Biopelículas , Nitrógeno/aislamiento & purificación , Oxígeno/aislamiento & purificación , Fósforo/aislamiento & purificación , Industria Textil , Contaminantes del Agua/aislamiento & purificación
16.
Water Environ Res ; 78(11): 2286-92, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17120448

RESUMEN

The removal of pyrene and benzo(a)pyrene from contaminated water by sequential and simultaneous ozonation-bioremediation techniques was investigated. During the sequential treatment, ozonation using 0.5 or 2.5 mg/L ozone was used as a pretreatment process, whereas, during the simultaneous treatment process, ozonation of hydrocarbon-contaminated water at a predetermined duration using 0.5 mg/L ozone was made in the presence of microbial biomass. Ozonation was not beneficial for the removal of pyrene. However, despite a decreased specific biodegradation rate, ozonation improved the overall elimination of benzo(a)pyrene during both treatment processes. The overall removal of benzo(a)pyrene increased from 23 to 91% after exposure of the water to 0.5 mg/L ozone for 30 minutes during the simultaneous treatment process and further to 100% following exposure to 2.5 mg/L ozone for 60 minutes during the sequential treatment mode, demonstrating the benefits of combined ozonation-biological treatment for the removal of polycyclic aromatic hydrocarbons.


Asunto(s)
Benzo(a)pireno/aislamiento & purificación , Pirenos/aislamiento & purificación , Benzo(a)pireno/análisis , Biodegradación Ambiental , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Pirenos/análisis , Reproducibilidad de los Resultados , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos
17.
Chemosphere ; 61(7): 1042-50, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16197980

RESUMEN

The biotransformation and mineralization of a mixture of two polycyclic aromatic hydrocarbons (PAHs), anthracene and pyrene, which are known contaminants of soil and groundwater, by an enrichment culture in the presence or absence of 100 mg l(-1) Tergitol NP-10, a non-ionic surfactant, and at temperatures of 10 degrees C and 25 degrees C were investigated. The overall biotransformation of 2 mg l(-1) total PAHs with free cell suspensions in batch culture was greater than 97.2% at both examined temperatures. At 25 degrees C, the overall mineralization of anthracene was 48.8% and that of pyrene was 66.1%. However, the decrease of temperature to 10 degrees C had a negative effect on the mineralization of PAHs and reduced it to 18.5% and 61.5% for anthracene and pyrene, respectively. Using a higher PAHs concentration of 20 mg l(-1) at 25 degrees C, the overall biotransformation of anthracene was 80.7% and that of pyrene was 100%, where only 17.3% anthracene and 7.6% pyrene were mineralized to carbon dioxide and water. The addition of surfactant at 25 degrees C increased the overall mineralization of anthracene and pyrene to 33.0% and 27.6%, respectively. However, the addition of surfactant at 10 degrees C had a negative impact on the overall biotransformation of anthracene and pyrene, reducing them to 20.6% and 14.0%, respectively. These results have significant implications in the bioremediation of PAHs-contaminated sites.


Asunto(s)
Antracenos/metabolismo , Poloxaleno/química , Pirenos/metabolismo , Tensoactivos/química , Antracenos/análisis , Bacterias/metabolismo , Biodegradación Ambiental , Cinética , Pirenos/análisis , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Temperatura , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo
18.
Biotechnol Bioeng ; 79(3): 347-55, 2002 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-12115423

RESUMEN

A special microbial consortium adapted to degrade petroleum hydrocarbons at limited availability of oxygen, transformed benzene, a highly toxic and carcinogenic contaminant of groundwater and soil, at low initial dissolved oxygen (DO) concentrations of 0.05-2 mg/L. The employed initial concentrations of dissolved oxygen were considerably lower than the previously reported values. Under these conditions, the overall transformation of benzene ranged from 34% +/- 1.7% to 100%, considerably higher than the theoretical predictions for complete mineralization of benzene based on the requirement of 3.08 mg oxygen/mg benzene. Unlike biotransformation that proceeded at the lowest examined DO concentration of 0.05 mg/L, the mineralization of benzene, defined by its conversion to CO(2) and water, required a minimum DO concentration of 0.2 mg/L. The mineralization of benzene under microaerophilic conditions (DO < 2 mg/L), ranged from 0.83% +/- 0.06% to 89% +/- 1.3%, which was less than the theoretical predictions at any given initial DO concentration. The regulatory effects of dissolved oxygen concentration or its partial pressure on the activities of enzymes catalyzing the biotransformation of aromatic hydrocarbons was postulated to account for the reduced mineralization of benzene. The ratio between the transformed benzene and the consumed oxygen increased with the decrease of initial DO concentration, reaching a value of 2.8, considerably higher than the theoretical value of 0.33 obtained for a complete aerobic oxidation of benzene. Phenol was the major and the most stable intermediate metabolite during the biotransformation of benzene at low concentrations of DO. While benzene transformation stopped after the depletion of oxygen in the experimental system, phenol continued to accumulate under strictly anaerobic conditions, indicating its formation from an alternative carbon source, possibly biomass.


Asunto(s)
Benceno/metabolismo , Oxígeno/metabolismo , Fenol/metabolismo , Aerobiosis , Anaerobiosis , Biodegradación Ambiental , Reactores Biológicos , Biotransformación , Dióxido de Carbono/metabolismo , Microbiología , Minerales/metabolismo , Oxidación-Reducción , Sensibilidad y Especificidad , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...