Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(2): 940-952, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38084902

RESUMEN

Structural plasticity is integral to RNA function; however, there are currently few methods to quantitatively resolve RNAs that have multiple structural states. NMR spectroscopy is a powerful approach for resolving conformational ensembles but is size-limited. Chemical probing is well-suited for large RNAs but provides limited structural and kinetics information. Here, we integrate the two approaches to visualize a two-state conformational ensemble for the central stem-loop 3 (SL3) of 7SK RNA, a critical element for 7SK RNA function in transcription regulation. We find that the SL3 distal end exchanges between two equally populated yet structurally distinct states in both isolated SL3 constructs and full-length 7SK RNA. We rationally designed constructs that lock SL3 into a single state and demonstrate that both chemical probing and NMR data fit to a linear combination of the two states. Comparison of vertebrate 7SK RNA sequences shows either or both states are highly conserved. These results provide new insights into 7SK RNA structural dynamics and demonstrate the utility of integrating chemical probing with NMR spectroscopy to gain quantitative insights into RNA conformational ensembles.


Asunto(s)
ARN Nuclear Pequeño , Unión Proteica , ARN Nuclear Pequeño/genética , Conformación de Ácido Nucleico , Espectroscopía de Resonancia Magnética
2.
bioRxiv ; 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37609139

RESUMEN

Structural plasticity is integral to RNA function; however, there are currently few methods to quantitatively resolve RNAs that have multiple structural states. NMR spectroscopy is a powerful approach for resolving conformational ensembles but is size-limited. Chemical probing is well-suited for large RNAs but provides limited structural and no kinetics information. Here, we integrate the two approaches to visualize a two-state conformational ensemble for the central stem-loop 3 (SL3) of 7SK RNA, a critical element for 7SK RNA function in transcription regulation. We find that the SL3 distal end exchanges between two equally populated yet structurally distinct states in both isolated SL3 constructs and full-length 7SK RNA. We rationally designed constructs that lock SL3 into a single state and demonstrate that both chemical probing and NMR data fit to a linear combination of the two states. Comparison of vertebrate 7SK RNA sequences shows conservation of both states, suggesting functional importance. These results provide new insights into 7SK RNA structural dynamics and demonstrate the utility of integrating chemical probing with NMR spectroscopy to gain quantitative insights into RNA conformational ensembles.

3.
Methods Mol Biol ; 2586: 251-261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36705909

RESUMEN

Despite growing interest in applying RNA's unique structural characteristics to solve diverse biotechnology and nanotechnology problems, there are few computational tools for targeted tertiary design. As a result, RNA 3D design is traditionally slow, resource-consuming, and dependent on expert modeling. In this chapter, we discuss our recently developed software package: RNAMake, a set of applications capable of designing RNA tertiary structures to solve various relevant nanotechnology problems and provide basic thermodynamic calculations for the generated designs. We provide in-depth examples and instructions for designing example RNA nanostructures such as minimal RNA sequences containing a single tertiary contact, generating RNAs that stabilize small-molecule ligands, and building tethers that link ribosomal subunits together. We also highlight the addition of a new Monte Carlo design algorithm and the ability to estimate the thermodynamic contribution of helical elements in RNA 3D structures.


Asunto(s)
Nanoestructuras , ARN , ARN/química , Conformación de Ácido Nucleico , Nanoestructuras/química , Nanotecnología , Algoritmos
4.
Nucleic Acids Res ; 50(W1): W266-W271, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35657086

RESUMEN

RNA structures play critical roles in regulating gene expression across all domains of life and viruses. Chemical probing methods coupled with massively parallel sequencing have revolutionized the RNA structure field by enabling the assessment of many structures in their native, physiological context. Previously, we developed Dimethyl-Sulfate-based Mutational Profiling and Sequencing (DMS-MaPseq), which uses DMS to label the Watson-Crick face of open and accessible adenine and cytosine bases in the RNA. We used this approach to determine the genome-wide structures of HIV-1 and SARS-CoV-2 in infected cells, which permitted uncovering new biology and identifying therapeutic targets. Due to the simplicity and ease of the experimental procedure, DMS-MaPseq has been adopted by labs worldwide. However, bioinformatic analysis remains a substantial hurdle for labs that often lack the necessary infrastructure and computational expertise. Here we present a modern web-based interface that automates the analysis of chemical probing profiles from raw sequencing files (http://rnadreem.org). The availability of a simple web-based platform for DMS-MaPseq analysis will dramatically expand studies of RNA structure and aid in the design of structure-based therapeutics.


Asunto(s)
Internet , Conformación de Ácido Nucleico , Pliegue del ARN , ARN , Humanos , ARN/genética , ARN/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Análisis de Secuencia de ARN/métodos , VIH-1/efectos de los fármacos , VIH-1/genética , Adenina , Citosina , Genoma Viral/genética , Diseño de Fármacos , ARN Viral/química , ARN Viral/efectos de los fármacos , ARN Viral/genética
5.
Nat Commun ; 13(1): 911, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177610

RESUMEN

Three-dimensional (3D) structures dictate the functions of RNA molecules in a wide variety of biological processes. However, direct determination of RNA 3D structures in vivo is difficult due to their large sizes, conformational heterogeneity, and dynamics. Here we present a method, Spatial 2'-Hydroxyl Acylation Reversible Crosslinking (SHARC), which uses chemical crosslinkers of defined lengths to measure distances between nucleotides in cellular RNA. Integrating crosslinking, exonuclease (exo) trimming, proximity ligation, and high throughput sequencing, SHARC enables transcriptome-wide tertiary structure contact maps at high accuracy and precision, revealing heterogeneous RNA structures and interactions. SHARC data provide constraints that improves Rosetta-based RNA 3D structure modeling at near-nanometer resolution. Integrating SHARC-exo with other crosslinking-based methods, we discover compact folding of the 7SK RNA, a critical regulator of transcriptional elongation. These results establish a strategy for measuring RNA 3D distances and alternative conformations in their native cellular context.


Asunto(s)
Modelos Moleculares , ARN/ultraestructura , Acilación , Reactivos de Enlaces Cruzados/química , Células HEK293 , Células HeLa , Humanos , Conformación de Ácido Nucleico , ARN/química , ARN/aislamiento & purificación , Pliegue del ARN , Elongación de la Transcripción Genética
6.
Sci Adv ; 7(48): eabl6096, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34826236

RESUMEN

The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small-molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report on the identification of amiloride-based small molecules that potently inhibit OC43 and SARS-CoV-2 replication through targeting of conserved structured elements within the viral 5'-end. Nuclear magnetic resonance­based structural studies revealed specific amiloride interactions with stem loops containing bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Amilorides represent the first antiviral small molecules that target RNA structures within the 5' untranslated regions and proximal region of the CoV genomes. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA­targeted antivirals.

7.
bioRxiv ; 2020 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-33299997

RESUMEN

The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, has rendered our understanding of coronavirus biology more essential than ever. Small molecule chemical probes offer to both reveal novel aspects of virus replication and to serve as leads for antiviral therapeutic development. The RNA-biased amiloride scaffold was recently tuned to target a viral RNA structure critical for translation in enterovirus 71, ultimately uncovering a novel mechanism to modulate positive-sense RNA viral translation and replication. Analysis of CoV RNA genomes reveal many conserved RNA structures in the 5'-UTR and proximal region critical for viral translation and replication, including several containing bulge-like secondary structures suitable for small molecule targeting. Following phylogenetic conservation analysis of this region, we screened an amiloride-based small molecule library against a less virulent human coronavirus, OC43, to identify lead ligands. Amilorides inhibited OC43 replication as seen in viral plaque assays. Select amilorides also potently inhibited replication competent SARS-CoV-2 as evident in the decreased levels of cell free virions in cell culture supernatants of treated cells. Reporter screens confirmed the importance of RNA structures in the 5'-end of the viral genome for small molecule activity. Finally, NMR chemical shift perturbation studies of the first six stem loops of the 5'-end revealed specific amiloride interactions with stem loops 4, 5a, and 6, all of which contain bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Taken together, the use of multiple orthogonal approaches allowed us to identify the first small molecules aimed at targeting RNA structures within the 5'-UTR and proximal region of the CoV genome. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA-targeted antivirals.

8.
Nat Commun ; 11(1): 5531, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139729

RESUMEN

Biomolecules form dynamic ensembles of many inter-converting conformations which are key for understanding how they fold and function. However, determining ensembles is challenging because the information required to specify atomic structures for thousands of conformations far exceeds that of experimental measurements. We addressed this data gap and dramatically simplified and accelerated RNA ensemble determination by using structure prediction tools that leverage the growing database of RNA structures to generate a conformation library. Refinement of this library with NMR residual dipolar couplings provided an atomistic ensemble model for HIV-1 TAR, and the model accuracy was independently supported by comparisons to quantum-mechanical calculations of NMR chemical shifts, comparison to a crystal structure of a substate, and through designed ensemble redistribution via atomic mutagenesis. Applications to TAR bulge variants and more complex tertiary RNAs support the generality of this approach and the potential to make the determination of atomic-resolution RNA ensembles routine.


Asunto(s)
Quimioinformática/métodos , VIH-1/química , Pliegue del ARN , ARN Viral/ultraestructura , Duplicado del Terminal Largo de VIH , VIH-1/genética , VIH-1/ultraestructura , Modelos Químicos , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , ARN Viral/química , ARN Viral/genética
9.
Nat Methods ; 17(7): 699-707, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32616928

RESUMEN

The discovery and design of biologically important RNA molecules is outpacing three-dimensional structural characterization. Here, we demonstrate that cryo-electron microscopy can routinely resolve maps of RNA-only systems and that these maps enable subnanometer-resolution coordinate estimation when complemented with multidimensional chemical mapping and Rosetta DRRAFTER computational modeling. This hybrid 'Ribosolve' pipeline detects and falsifies homologies and conformational rearrangements in 11 previously unknown 119- to 338-nucleotide protein-free RNA structures: full-length Tetrahymena ribozyme, hc16 ligase with and without substrate, full-length Vibrio cholerae and Fusobacterium nucleatum glycine riboswitch aptamers with and without glycine, Mycobacterium SAM-IV riboswitch with and without S-adenosylmethionine, and the computer-designed ATP-TTR-3 aptamer with and without AMP. Simulation benchmarks, blind challenges, compensatory mutagenesis, cross-RNA homologies and internal controls demonstrate that Ribosolve can accurately resolve the global architectures of RNA molecules but does not resolve atomic details. These tests offer guidelines for making inferences in future RNA structural studies with similarly accelerated throughput.


Asunto(s)
Microscopía por Crioelectrón/métodos , ARN/química , Simulación por Computador , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Catalítico/química , Riboswitch
10.
RNA ; 26(8): 982-995, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32371455

RESUMEN

RNA-Puzzles is a collective endeavor dedicated to the advancement and improvement of RNA 3D structure prediction. With agreement from crystallographers, the RNA structures are predicted by various groups before the publication of the crystal structures. We now report the prediction of 3D structures for six RNA sequences: four nucleolytic ribozymes and two riboswitches. Systematic protocols for comparing models and crystal structures are described and analyzed. In these six puzzles, we discuss (i) the comparison between the automated web servers and human experts; (ii) the prediction of coaxial stacking; (iii) the prediction of structural details and ligand binding; (iv) the development of novel prediction methods; and (v) the potential improvements to be made. We show that correct prediction of coaxial stacking and tertiary contacts is essential for the prediction of RNA architecture, while ligand binding modes can only be predicted with low resolution and simultaneous prediction of RNA structure with accurate ligand binding still remains out of reach. All the predicted models are available for the future development of force field parameters and the improvement of comparison and assessment tools.


Asunto(s)
Aptámeros de Nucleótidos/química , ARN Catalítico/química , ARN/química , Secuencia de Bases , Ligandos , Conformación de Ácido Nucleico , Riboswitch/genética
11.
Proc Natl Acad Sci U S A ; 116(34): 16847-16855, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31375637

RESUMEN

Structured RNAs and RNA complexes underlie biological processes ranging from control of gene expression to protein translation. Approximately 50% of nucleotides within known structured RNAs are folded into Watson-Crick (WC) base pairs, and sequence changes that preserve these pairs are typically assumed to preserve higher-order RNA structure and binding of macromolecule partners. Here, we report that indirect effects of the helix sequence on RNA tertiary stability are, in fact, significant but are nevertheless predictable from a simple computational model called RNAMake-∆∆G. When tested through the RNA on a massively parallel array (RNA-MaP) experimental platform, blind predictions for >1500 variants of the tectoRNA heterodimer model system achieve high accuracy (rmsd 0.34 and 0.77 kcal/mol for sequence and length changes, respectively). Detailed comparison of predictions to experiments support a microscopic picture of how helix sequence changes subtly modulate conformational fluctuations at each base-pair step, which accumulate to impact RNA tertiary structure stability. Our study reveals a previously overlooked phenomenon in RNA structure formation and provides a framework of computation and experiment for understanding helix conformational preferences and their impact across biological RNA and RNA-protein assemblies.


Asunto(s)
Conformación de Ácido Nucleico , ARN/química , ARN/genética , Emparejamiento Base , Secuencia de Bases , Modelos Moleculares , Estabilidad del ARN , Termodinámica
12.
Nat Nanotechnol ; 14(9): 866-873, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31427748

RESUMEN

RNA nanotechnology seeks to create nanoscale machines by repurposing natural RNA modules. The field is slowed by the current need for human intuition during three-dimensional structural design. Here, we demonstrate that three distinct problems in RNA nanotechnology can be reduced to a pathfinding problem and automatically solved through an algorithm called RNAMake. First, RNAMake discovers highly stable single-chain solutions to the classic problem of aligning a tetraloop and its sequence-distal receptor, with experimental validation from chemical mapping, gel electrophoresis, solution X-ray scattering and crystallography with 2.55 Å resolution. Second, RNAMake automatically generates structured tethers that integrate 16S and 23S ribosomal RNAs into single-chain ribosomal RNAs that remain uncleaved by ribonucleases and assemble onto messenger RNA. Third, RNAMake enables the automated stabilization of small-molecule binding RNAs, with designed tertiary contacts that improve the binding affinity of the ATP aptamer and improve the fluorescence and stability of the Spinach RNA in cell extracts and in living Escherichia coli cells.


Asunto(s)
ARN/química , Cristalografía por Rayos X , Escherichia coli/química , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN de Planta/química , ARN Ribosómico 16S/química , ARN Ribosómico 23S/química , Spinacia oleracea/química
13.
Nucleic Acids Res ; 46(D1): D375-D379, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30053264

RESUMEN

Chemical mapping is a broadly utilized technique for probing the structure and function of RNAs. The volume of chemical mapping data continues to grow as more researchers routinely employ this information and as experimental methods increase in throughput and information content. To create a central location for these data, we established an RNA mapping database (RMDB) 5 years ago. The RMDB, which is available at http://rmdb.stanford.edu, now contains chemical mapping data for over 800 entries, involving 134 000 natural and engineered RNAs, in vitro and in cellulo. The entries include large data sets from multidimensional techniques that focus on RNA tertiary structure and co-transcriptional folding, resulting in over 15 million residues probed. The database interface has been redesigned and now offers interactive graphical browsing of structural, thermodynamic and kinetic data at single-nucleotide resolution. The front-end interface now uses the force-directed RNA applet for secondary structure visualization and other JavaScript-based views of bar graphs and annotations. A new interface also streamlines the process for depositing new chemical mapping data to the RMDB.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN/química , Conformación de Ácido Nucleico , Interfaz Usuario-Computador
14.
Proc Natl Acad Sci U S A ; 114(37): 9876-9881, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28851837

RESUMEN

Despite the critical roles RNA structures play in regulating gene expression, sequencing-based methods for experimentally determining RNA base pairs have remained inaccurate. Here, we describe a multidimensional chemical-mapping method called "mutate-and-map read out through next-generation sequencing" (M2-seq) that takes advantage of sparsely mutated nucleotides to induce structural perturbations at partner nucleotides and then detects these events through dimethyl sulfate (DMS) probing and mutational profiling. In special cases, fortuitous errors introduced during DNA template preparation and RNA transcription are sufficient to give M2-seq helix signatures; these signals were previously overlooked or mistaken for correlated double-DMS events. When mutations are enhanced through error-prone PCR, in vitro M2-seq experimentally resolves 33 of 68 helices in diverse structured RNAs including ribozyme domains, riboswitch aptamers, and viral RNA domains with a single false positive. These inferences do not require energy minimization algorithms and can be made by either direct visual inspection or by a neural-network-inspired algorithm called M2-net. Measurements on the P4-P6 domain of the Tetrahymena group I ribozyme embedded in Xenopus egg extract demonstrate the ability of M2-seq to detect RNA helices in a complex biological environment.


Asunto(s)
Emparejamiento Base/genética , Geobacillus stearothermophilus/genética , Conformación de Ácido Nucleico , ARN/química , Tetrahymena/genética , Xenopus laevis/genética , Animales , Secuencia de Bases , Plásmidos/genética , ARN Catalítico/genética , Riboswitch/genética , Análisis de Secuencia de ARN
15.
Methods Mol Biol ; 1490: 187-98, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27665600

RESUMEN

Noncanonical RNA motifs help define the vast complexity of RNA structure and function, and in many cases, these loops and junctions are on the order of only ten nucleotides in size. Unfortunately, despite their small size, there is no reliable method to determine the ensemble of lowest energy structures of junctions and loops at atomic accuracy. This chapter outlines straightforward protocols using a webserver for Rosetta Fragment Assembly of RNA with Full Atom Refinement (FARFAR) ( http://rosie.rosettacommons.org/rna_denovo/submit ) to model the 3D structure of small noncanonical RNA motifs for use in visualizing motifs and for further refinement or filtering with experimental data such as NMR chemical shifts.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Modelos Moleculares , Conformación de Ácido Nucleico , Motivos de Nucleótidos , ARN/química , Programas Informáticos , Interfaz Usuario-Computador , Navegador Web
16.
Proc Natl Acad Sci U S A ; 113(35): E5125-34, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27531956

RESUMEN

Telomerase is an RNA-protein complex that includes a unique reverse transcriptase that catalyzes the addition of single-stranded telomere DNA repeats onto the 3' ends of linear chromosomes using an integral telomerase RNA (TR) template. Vertebrate TR contains the template/pseudoknot (t/PK) and CR4/5 domains required for telomerase activity in vitro. All vertebrate pseudoknots include two subdomains: P2ab (helices P2a and P2b with a 5/6-nt internal loop) and the minimal pseudoknot (P2b-P3 and associated loops). A helical extension of P2a, P2a.1, is specific to mammalian TR. Using NMR, we investigated the structures of the full-length TR pseudoknot and isolated subdomains in Oryzias latipes (Japanese medaka fish), which has the smallest vertebrate TR identified to date. We determined the solution NMR structure and studied the dynamics of medaka P2ab, and identified all base pairs and tertiary interactions in the minimal pseudoknot. Despite differences in length and sequence, the structure of medaka P2ab is more similar to human P2ab than predicted, and the medaka minimal pseudoknot has the same tertiary interactions as the human pseudoknot. Significantly, although P2a.1 is not predicted to form in teleost fish, we find that it forms in the full-length pseudoknot via an unexpected hairpin. Model structures of the subdomains are combined to generate a model of t/PK. These results provide evidence that the architecture for the vertebrate t/PK is conserved from teleost fish to human. The organization of the t/PK on telomerase reverse transcriptase for medaka and human is modeled based on the cryoEM structure of Tetrahymena telomerase, providing insight into function.


Asunto(s)
Oryzias/genética , ARN/genética , Telomerasa/genética , Vertebrados/genética , Animales , Secuencia de Bases , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , ARN/química , ARN/metabolismo , Telomerasa/química , Telomerasa/metabolismo
17.
RNA ; 22(1): 32-48, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26567314

RESUMEN

Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such "off-pathway" species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2'- and 3'-deoxy (-H) and -amino (-NH(2)) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3'-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2'-OH making no interaction. Upon S binding, a rearrangement occurs that allows both -OH groups to contact a different active site metal ion, termed M(C), to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA's difficulty in specifying a unique conformation and highlighting Nature's potential to use local transitions of RNA in complex function.


Asunto(s)
ARN Catalítico/metabolismo , Tetrahymena/enzimología , Catálisis , Dominio Catalítico , Conformación de Ácido Nucleico , Sondas ARN , ARN Catalítico/química
18.
Nucleic Acids Res ; 43(W1): W498-501, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25964298

RESUMEN

RNA is rising in importance as a design medium for interrogating fundamental biology and for developing therapeutic and bioengineering applications. While there are several online servers for design of RNA secondary structure, there are no tools available for the rational design of 3D RNA structure. Here we present RNA-Redesign (http://rnaredesign.stanford.edu), an online 3D design tool for RNA. This resource utilizes fixed-backbone design to optimize the sequence identity and nucleobase conformations of an RNA to match a desired backbone, analogous to fundamental tools that underlie rational protein engineering. The resulting sequences suggest thermostabilizing mutations that can be experimentally verified. Further, sequence preferences that differ between natural and computationally designed sequences can suggest whether natural sequences possess functional constraints besides folding stability, such as cofactor binding or conformational switching. Finally, for biochemical studies, the designed sequences can suggest experimental tests of 3D models, including concomitant mutation of base triples. In addition to the designs generated, detailed graphical analysis is presented through an integrated and user-friendly environment.


Asunto(s)
ARN/química , Programas Informáticos , Internet , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Análisis de Secuencia de ARN
19.
Nucleic Acids Res ; 43(W1): W522-6, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25999345

RESUMEN

Customized RNA synthesis is in demand for biological and biotechnological research. While chemical synthesis and gel or chromatographic purification of RNA is costly and difficult for sequences longer than tens of nucleotides, a pipeline of primer assembly of DNA templates, in vitro transcription by T7 RNA polymerase and kit-based purification provides a cost-effective and fast alternative for preparing RNA molecules. Nevertheless, designing template primers that optimize cost and avoid mispriming during polymerase chain reaction currently requires expert inspection, downloading specialized software or both. Online servers are currently not available or maintained for the task. We report here a server named Primerize that makes available an efficient algorithm for primer design developed and experimentally tested in our laboratory for RNA domains with lengths up to 300 nucleotides. Free access: http://primerize.stanford.edu.


Asunto(s)
Cartilla de ADN/química , ARN no Traducido/biosíntesis , Programas Informáticos , Algoritmos , Internet , Conformación de Ácido Nucleico , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Moldes Genéticos , Transcripción Genética
20.
Proteins ; 83(3): 403-410, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25401519

RESUMEN

The propensity of backbone Cα atoms to engage in carbon-oxygen (CH · · · O) hydrogen bonding is well-appreciated in protein structure, but side chain CH · · · O hydrogen bonding remains largely uncharacterized. The extent to which side chain methyl groups in proteins participate in CH · · · O hydrogen bonding is examined through a survey of neutron crystal structures, quantum chemistry calculations, and molecular dynamics simulations. Using these approaches, methyl groups were observed to form stabilizing CH · · · O hydrogen bonds within protein structure that are maintained through protein dynamics and participate in correlated motion. Collectively, these findings illustrate that side chain methyl CH · · · O hydrogen bonding contributes to the energetics of protein structure and folding.


Asunto(s)
Carbono/química , Neutrones , Oxígeno/química , Proteínas/química , Carbono/metabolismo , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Oxígeno/metabolismo , Proteínas/metabolismo , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...