Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(19): 8908-8918, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38684934

RESUMEN

This work is devoted to evaluating the relationship between the oxygen content and catalytic activity in the CO oxidation process of the 6H-type BaFeO3-δ system. Strong evidence is provided about the improvement of catalytic performance with increasing Fe average oxidation state, thus suggesting the involvement of lattice oxygen in the catalytic process. The compositional and structural changes taking place in both the anionic and cationic sublattices of the catalysts during redox cycles have been determined by temperature-resolved neutron diffraction. The obtained results evidence a structural transition from hexagonal (P63/mmc) to orthorhombic (Cmcm) symmetry. This transition is linked to octahedra distortion when the Fe3+ concentration exceeds 40% (δ values higher than 0.2). The topotactical character of the redox process is maintained in the δ range 0 < δ < 0.4. This suggests that the cationic framework is only subjected to slight structural modifications during the oxygen exchange process occurring during the catalytic cycle.

2.
Environ Pollut ; 268(Pt A): 115769, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33070068

RESUMEN

The contamination of the aquatic environment by plastic nanoparticles is becoming a major concern due to their potential adverse effects in aquatic biota. Therefore, in-depth knowledge of their uptake, trafficking and effects at cellular and systemic levels is essential to understand their potential impacts for aquatic species. In this work, zebrafish (Danio rerio) was used as a model and our aims were: i) to determine the distribution, uptake, trafficking, degradation and genotoxicity of polystyrene (PS) NPs of different sizes in a zebrafish cell line; ii) to study PS NPs accumulation, migration of immune cells and genotoxicity in larvae exposed to PS NPs; and iii) to assess how PS NPs condition the survival of zebrafish larvae exposed to a pathogen and/or how they impact the resistance of an immunodeficient zebrafish. Our results revealed that the cellular distribution differed depending on the particle size: the 50 nm PS NPs were more homogeneously distributed in the cytoplasm and the 1 µM PS NPs more agglomerated. The main endocytic mechanisms for the uptake of NPs were dynamin-dependent internalization for the 50 nm NPs and phagocytosis for the 1 µm nanoparticles. In both cases, degradation in lysosomes was the main fate of the PS NPs, which generated alkalinisation and modified cathepsin genes expression. These effects at cellular level agree with the results in vivo, since lysosomal alkalization increases oxidative stress and vice versa. Nanoparticles mainly accumulated in the gut, where they triggered reactive oxygen species, decreased expression of the antioxidant gene catalase and induced migration of immune cells. Finally, although PS NPs did not induce mortality in wild-type larvae, immunodeficient and infected larvae had decreased survival upon exposure to PS NPs. This fact could be explained by the mechanical disruption and/or the oxidative damage caused by these NPs that increase their susceptibility to pathogens.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Larva , Microplásticos , Poliestirenos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
3.
J Hazard Mater ; 388: 121788, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31813690

RESUMEN

Plastic litter is an issue of global concern. In this work Mytilus galloprovincialis was used to study the distribution and effects of polystyrene nanoplastics (PS NPs) of different sizes (50 nm, 100 nm and 1 µm) on immune cells. Internalization and translocation of NPs to hemolymph were carried out by in vivo experiments, while endocytic routes and effects of PS NPs on hemocytes were studied in vitro. The smallest PS NPs tested were detected in the digestive gland and muscle. A fast and size-dependent translocation of PS NPs to the hemolymph was recorded after 3 h of exposure. The internalization rate of 50 nm PS NPs was lower when caveolae and clathrin endocytosis pathways were inhibited. On the other hand, the internalization of larger particles decreased when phagocytosis was inhibited. The hemocytes exposed to NPs had changes in motility, apoptosis, ROS and phagocytic capacity. However, they showed resilience when were infected with bacteria after PS NP exposure being able to recover their phagocytic capacity although the expression of the antimicrobial peptide Myticin C was reduced. Our findings show for the first time the translocation of PS NPs into hemocytes and how their effects trigger the loss of its functional parameters.


Asunto(s)
Hemocitos/efectos de los fármacos , Microplásticos/farmacología , Mytilus , Nanopartículas/administración & dosificación , Poliestirenos/farmacología , Vibriosis/inmunología , Vibrio , Contaminantes Químicos del Agua/farmacología , Animales , Transporte Biológico , Tracto Gastrointestinal/metabolismo , Hemocitos/fisiología , Hemolinfa/metabolismo , Músculos/metabolismo , Mytilus/efectos de los fármacos , Mytilus/inmunología , Mytilus/metabolismo , Mytilus/microbiología , Fagocitosis , Vibriosis/veterinaria
4.
Aquat Toxicol ; 200: 13-20, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29704629

RESUMEN

Over the last decades, the growth in nanotechnology has provoked an increase in the number of its applications and consumer products that incorporate nanomaterials in their formulation. Metal nanoparticles are released to the marine environment and they can interact with cells by colloids forces establish a nano-bio interface. This interface can be compatible or generate bioadverse effects to cells. The daily use of CeO2 nanoparticles (CeO2 NPs) in industrial catalysis, sunscreen, fuel cells, fuel additives and biomedicine and their potential release into aquatic environments has turned them into a new emerging pollutant of concern. It is necessary to assess of effects of CeO2 NPs in aquatic organisms and understand the potential mechanisms of action of CeO2 NP toxicity to improve our knowledge about the intrinsic and extrinsic characteristic of CeO2 NPs and the interaction of CeO2 NPs with biomolecules in different environment and biological fluids. The conserved innate immune system of bivalves represents a useful tool for studying immunoregulatory responses when cells are exposed to NPs. In this context, the effects of two different CeO2 NPs with different physico-chemical characteristics (size, shape, zeta potential and Ce+3/Ce+4 ratio) and different behavior with biomolecules in plasma fluid were studied in a series of in vitro assays using primary hemocytes from Mytilus galloprovincialis. Different cellular responses such as lysosome membrane stability, phagocytosis capacity and extracellular reactive oxygen species (ROS) production were evaluated. Our results indicate that the agglomeration state of CeO2 NPs in the exposure media did not appear to have a substantial role in particle effects, while differences in shape, zeta potential and biocorona formation in NPs appear to be important in provoking negative impacts on hemocytes. The negative charge and the rounded shape of CeO2 NPs, which formed Cu, Zn-SOD biocorona in hemolymph serum (HS), triggered higher changes in the biomarker of stress (LMS) and immunological parameters (ROS and phagocytosis capacity). On the other hand, the almost neutral surface charge and well-faceted shape of CeO2 NPs did not show either biocorona formation in HS under tested conditions or significant responses. According to the results, the most relevant conclusion of this work is that not only the physicochemical characterization of CeO2 NPs plays an important role in NPs toxicity but also the study of the interaction of NPs with biological fluids is essential to know it behavior and toxicity at cellular level.


Asunto(s)
Cerio/química , Hemocitos/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Mytilus/metabolismo , Contaminantes Químicos del Agua/toxicidad , Animales , Hemocitos/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Nanopartículas del Metal/química , Mytilus/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/química
5.
Environ Pollut ; 227: 39-48, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28454020

RESUMEN

Use of titanium dioxide nanoparticles (TiO2 NPs) has become a part of our daily life and the high environmental concentrations predicted to accumulate in aquatic ecosystems are cause for concern. Although TiO2 has only limited reactivity, at the nanoscale level its physico-chemical properties and toxicity are different compared with bulk material. Phytoplankton is a key trophic level in fresh and marine ecosystems, and the toxicity provoked by these nanoparticles can affect the structure and functioning of ecosystems. Two microalgae species, one freshwater (Chlamydomonas reinhardtii) and the other marine (Phaeodactylum tricornutum), have been selected for testing the toxicity of TiO2 in NP and conventional bulk form and, given its photo-catalytic properties, the effect of UV-A was also checked. Growth inhibition, quantum yield reduction, increase of intracellular ROS production, membrane cell damage and production of exo-polymeric substances (EPS) were selected as variables to measure. TiO2 NPs and bulk TiO2 show a relationship between the size of agglomerates and time in freshwater and saltwater, but not in ultrapure water. Under two treatments, UV-A (6 h per day) and no UV-A exposure, NPs triggered stronger cytotoxic responses than bulk material. TiO2 NPs were also associated with greater production of reactive oxygen species and damage to membrane. However, microalgae exposed to TiO2 NPs and bulk TiO2 under UV-A were found to be more sensitive than in the visible light condition. The marine species (P. tricornutum) was more sensitive than the freshwater species, and higher Ti internalization was measured. Exopolymeric substances (EPS) were released from microalgae in the culture media, in the presence of TiO2 in both forms. This may be a possible defense mechanism by these cells, which would enhance processes of homoagglomeration and settling, and thus reduce bioavailability.


Asunto(s)
Nanopartículas/toxicidad , Titanio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Agua Dulce , Luz , Microalgas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fitoplancton/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Toxicidad , Rayos Ultravioleta
6.
Chemosphere ; 179: 279-289, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28371711

RESUMEN

The last decade has seen a considerable increase in the use of silver nanoparticles (AgNPs), which are found in many every-day consumer products including textiles, plastics, cosmetics, household sprays and paints. The release of those AgNPs into aquatic environments could be causing ecological damage. In this study we assess the toxicity of AgNPs of different sizes to two species of microalgae, from freshwater and marine environment (Chlamydomonas reinhardtii and Phaeodactylum tricornutum respectively). Dissolution processes affect the form and concentration of AgNPs in both environments. Dissolution of Ag from AgNPs was around 25 times higher in marine water. Nevertheless, dissolution of AgNPs in both culture media seems to be related to the small size and higher surface area of NPs. In marine water, the main chemical species were AgCl2- (53.7%) and AgCl3-2 (45.2%). In contrast, for freshwater, the main chemical species were Ag+ (26.7%) and AgCl- (4.3%). The assessment of toxicological responses, specifically growth, cell size, cell complexity, chlorophyll a, reactive oxygen species, cell membrane damage and effective quantum yield of PSII, corroborated the existence of different toxicity mechanisms for microalgae. Indirect effects, notably dissolved Ag ions, seem to control toxicity to freshwater microalgae, whereas direct effects, notably attachment onto the cell surface and the internalization of AgNPs inside cells, seem to determine toxicity to the marine species studied. This research contributes to knowledge on the role of intrinsic and extrinsic factors in determining the behavior of NPs in different aquatic environments and the interaction with microalgae.


Asunto(s)
Nanopartículas del Metal/toxicidad , Microalgas/efectos de los fármacos , Plata/toxicidad , Contaminantes Químicos del Agua/toxicidad , Chlamydomonas reinhardtii/efectos de los fármacos , Agua Dulce/química , Iones , Agua de Mar/química , Solubilidad , Agua/química
7.
Sci Total Environ ; 592: 403-411, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28324857

RESUMEN

TiO2 nanoparticles (TiO2 NPs) are employed in many products (paints, personal care products, especially sunscreens, plastics, paper, water potabilization and food products) and are then released into the environment from these products. These nanoparticles present potential risk to freshwater and marine microalgae. The primary toxicity mechanism is adsorption between NPs and microalgae (heteroagglomeration); however, studies of interactions of this kind are scarce. We investigated the heteroagglomeration process that occurs between two forms of TiO2 material, nanoparticles and bulk, and three different microalgae species, and under different environmental conditions (freshwater and marine water), in order to assess the influence of pH and ionic strength (IS). The heteroagglomeration process was examined by means of co-settling experiments and the Derjaguin-Landau-Verwey-Overbeek (DLVO) approach. The homoagglomeration process (only NPs to NPs) did not show differences between culture media (freshwater and marine water). However, in the heteroagglomeration process between NPs and cells, IS played an important role. Ions can compress the electro-double layer between NPs and microalgae, allowing a heteroagglomeration process to take place, as shown by settling experiments. TiO2 NPs presented a settling rate higher than bulk TiO2. The DLVO theory could only partially explain heteroagglomeration because, in this model, it is not considered that NP-NP and Cell-Cell homoagglomeration co-occur. In this study neither the role of exopolymeric substances in the interaction between NPs and cells nor detoxification are considered. The authors suggest that the interaction between NPs and microalgae could be considered as the first stage in the process by which nanoparticles affect microalgae.


Asunto(s)
Microalgas/efectos de los fármacos , Nanopartículas/toxicidad , Titanio/toxicidad , Adsorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...