Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 262: 116542, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38991372

RESUMEN

Continuous glucose monitors are crucial for diabetes management, but invasive sampling, signal drift and frequent calibrations restrict their widespread usage. Microneedle sensors are emerging as a minimally-invasive platform for real-time monitoring of clinical parameters in interstitial fluid. Herein, a painless and flexible microneedle sensing patch is constructed by a mechanically-strong microneedle base and a thin layer of fluorescent hydrogel sensor for on-site, accurate, and continuous glucose monitoring. The Förster resonance energy transfer (FRET)-based hydrogel sensors are fabricated by facile photopolymerizations of acryloylated FRET pairs and glucose-specific phenylboronic acid. The optimized hydrogel sensor enables quantification of glucose with reversibility, high selectivity, and signal stability against photobleaching. Poly (ethylene glycol diacrylate)-co-polyacrylamide hydrogel is utilized as the microneedle base, facilitating effective skin piercing and biofluid extraction. The integrated microneedle sensor patch displays a sensitivity of 0.029 mM-1 in the (patho)physiological range, a low detection limit of 0.193 mM, and a response time of 7.7 min in human serum. Hypoglycemia, euglycemia and hyperglycemia are continuously monitored over 6 h simulated meal and rest activities in a porcine skin model. This microneedle sensor with high transdermal analytical performance offers a powerful tool for continuous diabetes monitoring at point-of-care settings.


Asunto(s)
Técnicas Biosensibles , Automonitorización de la Glucosa Sanguínea , Glucemia , Transferencia Resonante de Energía de Fluorescencia , Hidrogeles , Agujas , Dispositivos Electrónicos Vestibles , Humanos , Técnicas Biosensibles/instrumentación , Hidrogeles/química , Automonitorización de la Glucosa Sanguínea/instrumentación , Glucemia/análisis , Animales , Porcinos , Polietilenglicoles/química , Límite de Detección , Resinas Acrílicas/química , Diseño de Equipo , Monitoreo Continuo de Glucosa , Ácidos Borónicos
2.
Adv Sci (Weinh) ; 11(30): e2309509, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38884139

RESUMEN

Dermal tattoo biosensors are promising platforms for real-time monitoring of biomarkers, with skin used as a diagnostic interface. Traditional tattoo sensors have utilized small molecules as biosensing elements. However, the rise of synthetic biology has enabled the potential employment of engineered bacteria as living analytical tools. Exploiting engineered bacterial sensors will allow for potentially more sensitive detection across a broad biomarker range, with advanced processing and sense/response functionalities using genetic circuits. Here, the interfacing of bacterial biosensors as living analytics in tattoos is shown. Engineered bacteria are encapsulated into micron-scale hydrogel beads prepared through scalable microfluidics. These biosensors can sense both biochemical cues (model biomarkers) and biophysical cues (temperature changes, using RNA thermometers), with fluorescent readouts. By tattooing beads into skin models and confirming sensor activity post-tattooing, our study establishes a foundation for integrating bacteria as living biosensing entities in tattoos.


Asunto(s)
Técnicas Biosensibles , Tatuaje , Técnicas Biosensibles/métodos , Tatuaje/métodos , Humanos , Piel/microbiología , Piel/metabolismo , Biomarcadores/metabolismo , Biomarcadores/análisis , Bacterias/genética , Bacterias/metabolismo
3.
ACS Omega ; 9(24): 25415-25420, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38911740

RESUMEN

Sensing technologies support timely and critical decisions to save precious resources in healthcare, veterinary care, food safety, and environmental protection. However, the design of sensors demands strict technical characteristics for real-world applications. In this Viewpoint, we discuss the main challenges to tackle in the sensing field and how photonics represents a valuable tool in this sphere.

4.
Lab Chip ; 24(9): 2454-2467, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644805

RESUMEN

Safe, accurate, and reliable analysis of urinary biomarkers is clinically important for early detection and monitoring of the progression of chronic kidney disease (CKD), as it has become one of the world's most prevalent non-communicable diseases. However, current technologies for measuring urinary biomarkers are either time-consuming and limited to well-equipped hospitals or lack the necessary sensitivity for quantitative analysis and post a health risk to frontline practitioners. Here we report a robust paper-based dual functional biosensor, which is integrated with the clinical urine sampling vial, for the simultaneous and quantitative analysis of pH and glucose in urine. The pH sensor was fabricated by electrochemically depositing IrOx onto a paper substrate using optimised parameters, which enabled an ultrahigh sensitivity of 71.58 mV pH-1. Glucose oxidase (GOx) was used in combination with an electrochemically deposited Prussian blue layer for the detection of glucose, and its performance was enhanced by gold nanoparticles (AuNPs), chitosan, and graphite composites, achieving a sensitivity of 1.5 µA mM-1. This dual function biosensor was validated using clinical urine samples, where a correlation coefficient of 0.96 for pH and 0.98 for glucose detection was achieved with commercial methods as references. More importantly, the urine sampling vial was kept sealed throughout the sample-to-result process, which minimised the health risk to frontline practitioners and simplified the diagnostic procedures. This diagnostic platform, therefore, holds high promise as a rapid, accurate, safe, and user-friendly point-of-care (POC) technology for the analysis of urinary biomarkers in frontline clinical settings.


Asunto(s)
Técnicas Biosensibles , Papel , Sistemas de Atención de Punto , Humanos , Concentración de Iones de Hidrógeno , Oro/química , Glucosa/análisis , Urinálisis/instrumentación , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Técnicas Electroquímicas , Nanopartículas del Metal/química , Grafito/química , Biomarcadores/orina
5.
Biosens Bioelectron ; 256: 116242, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631133

RESUMEN

Psychiatric disorders are associated with serve disturbances in cognition, emotional control, and/or behavior regulation, yet few routine clinical tools are available for the real-time evaluation and early-stage diagnosis of mental health. Abnormal levels of relevant biomarkers may imply biological, neurological, and developmental dysfunctions of psychiatric patients. Exploring biosensors that can provide rapid, in-situ, and real-time monitoring of psychiatric biomarkers is therefore vital for prevention, diagnosis, treatment, and prognosis of mental disorders. Recently, psychiatric biosensors with high sensitivity, selectivity, and reproducibility have been widely developed, which are mainly based on electrochemical and optical sensing technologies. This review presented psychiatric disorders with high morbidity, disability, and mortality, followed by describing pathophysiology in a biomarker-implying manner. The latest biosensors developed for the detection of representative psychiatric biomarkers (e.g., cortisol, dopamine, and serotonin) were comprehensively summarized and compared in their sensitivities, sensing technologies, applicable biological platforms, and integrative readouts. These well-developed biosensors are promising for facilitating the clinical utility and commercialization of point-of-care diagnostics. It is anticipated that mental healthcare could be gradually improved in multiple perspectives, ranging from innovations in psychiatric biosensors in terms of biometric elements, transducing principles, and flexible readouts, to the construction of 'Big-Data' networks utilized for sharing intractable psychiatric indicators and cases.


Asunto(s)
Biomarcadores , Técnicas Biosensibles , Trastornos Mentales , Humanos , Biomarcadores/análisis , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Dopamina/análisis , Técnicas Electroquímicas/métodos , Trastornos Mentales/diagnóstico , Trastornos Mentales/fisiopatología , Salud Mental , Serotonina/análisis , Serotonina/sangre , Serotonina/metabolismo
6.
ACS Appl Nano Mater ; 7(6): 5956-5966, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38544505

RESUMEN

Constant exposure to blue light emanating from screens, lamps, digital devices, or other artificial sources at night can suppress melatonin secretion, potentially compromising both sleep quality and overall health. Daytime exposure to elevated levels of blue light can also lead to permanent damage to the eyes. Here, we have developed blue light protective plasmonic contact lenses (PCLs) to mitigate blue light exposure. Crafted from poly(hydroxyethyl methacrylate) (pHEMA) and infused with silver nanoparticles, these contact lenses serve as a protective barrier to filter blue light. Leveraging the plasmonic properties of silver nanoparticles, the lenses effectively filtered out the undesirable blue light (400-510 nm), demonstrating substantial protection (22-71%) while maintaining high transparency (80-96%) for the desirable light (511-780 nm). The maximum protection level reaches a peak of 79% at 455 nm, aligned with the emission peak for the blue light sourced from LEDs in consumer displays. The presence of silver nanoparticles was found to have an insignificant impact on the water content of the developed contact lenses. The lenses maintained high water retention levels within the range of 50-70 wt %, comparable to commercial contact lenses. The optical performance of the developed lenses remains unaffected in both artificial tears and contact lens storage solution over a month with no detected leakage of the nanoparticles. Additionally, the MTT assay confirmed that the lenses were biocompatible and noncytotoxic, maintaining cell viability at over 85% after 24 h of incubation. These lenses could be a potential solution to protect against the most intense wavelengths emitted by consumer displays and offer a remedy to counteract the deleterious effects of prolonged blue light exposure.

7.
Biosens Bioelectron ; 250: 116045, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301546

RESUMEN

Skin cancer is a critical global public health concern, with melanoma being the deadliest variant, correlated to 80% of skin cancer-related deaths and a remarkable propensity to metastasize. Despite notable progress in skin cancer prevention and diagnosis, the limitations of existing methods accentuate the demand for precise diagnostic tools. Biosensors have emerged as valuable clinical tools, enabling rapid and reliable point-of-care (POC) testing of skin cancer. This review offers insights into skin cancer development, highlights essential cutaneous melanoma biomarkers, and assesses the current landscape of biosensing technologies for diagnosis. The comprehensive analysis in this review underscores the transformative potential of biosensors in revolutionizing melanoma skin cancer diagnosis, emphasizing their critical role in advancing patient outcomes and healthcare efficiency. The increasing availability of these approaches supports direct diagnosis and aims to reduce the reliance on biopsies, enhancing POC diagnosis. Recent advancements in biosensors for skin cancer diagnosis hold great promise, with their integration into healthcare expected to enhance early detection accuracy and reliability, thereby mitigating socioeconomic disparities.


Asunto(s)
Técnicas Biosensibles , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/diagnóstico , Neoplasias Cutáneas/diagnóstico , Técnicas Biosensibles/métodos , Reproducibilidad de los Resultados , Piel
8.
Adv Sci (Weinh) ; 11(12): e2306560, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225744

RESUMEN

Point-of-care (POC) has the capacity to support low-cost, accurate and real-time actionable diagnostic data. Microneedle sensors have received considerable attention as an emerging technique to evolve blood-based diagnostics owing to their direct and painless access to a rich source of biomarkers from interstitial fluid. This review systematically summarizes the recent innovations in microneedle sensors with a particular focus on their utility in POC diagnostics and personalized medicine. The integration of various sensing techniques, mostly electrochemical and optical sensing, has been established in diverse architectures of "lab-on-a-microneedle" platforms. Microneedle sensors with tailored geometries, mechanical flexibility, and biocompatibility are constructed with a variety of materials and fabrication methods. Microneedles categorized into four types: metals, inorganics, polymers, and hydrogels, have been elaborated with state-of-the-art bioengineering strategies for minimally invasive, continuous, and multiplexed sensing. Microneedle sensors have been employed to detect a wide range of biomarkers from electrolytes, metabolites, polysaccharides, nucleic acids, proteins to drugs. Insightful perspectives are outlined from biofluid, microneedles, biosensors, POC devices, and theragnostic instruments, which depict a bright future of the upcoming personalized and intelligent health management.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Pruebas en el Punto de Atención , Proteínas , Agujas , Biomarcadores
9.
Opt Express ; 32(1): 92-103, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175065

RESUMEN

Optical coherence tomography (OCT) is a noninvasive imaging technique with large penetration depth into the tissue, but limited chemical specificity. By incorporating functional co-monomers, hydrogels can be designed to respond to specific molecules and undergo reversible volume changes. In this study, we present implantable and wearable biocompatible hydrogel sensors combined with OCT to monitor their thickness change as a tool for continuous and real-time monitoring of glucose concentration and pH. The results demonstrate the potential of combining hydrogel biosensors with OCT for non-contact continuous in-vivo monitoring of physiological parameters.


Asunto(s)
Tomografía de Coherencia Óptica , Dispositivos Electrónicos Vestibles , Hidrogeles , Glucosa , Concentración de Iones de Hidrógeno
10.
Biosens Bioelectron ; 249: 116003, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227993

RESUMEN

Contact lens sensors have been emerging as point-of-care devices in recent healthcare developments for ocular physiological condition monitoring and diagnosis. Fluorescence sensing technologies have been widely applied in contact lens sensors due to their accuracy, high sensitivity, and specificity. As ascorbic acid (AA) level in tears is closely related to ocular inflammation, a fluorescent contact lens sensor incorporating a BSA-Au nanocluster (NC) probe is developed for in situ tear AA detection. The NCs are firstly synthesized to obtain a fluorescent probe, which exhibits high reusability through the quench/recover (KMnO4/AA) process. The probe is then encapsulated with 15 wt% of poly(vinyl alcohol) (PVA) and 1.5 wt% of citric acid (CA) film, and implemented on a closed microfluidic contact lens sensing region. The laser-ablated microfluidic channel in contact lens sensors allows for tear fluid to flow through the sensing region, enabling an in-situ detection of AA. Meanwhile, a smartphone application accompanied by a customized 3D printed readout box is developed for image caption and algorism to quantitative analysis of AA levels. The contact lens sensor is tested within the readout box and the emission signal is collected through the smartphone camera at room temperature with an achieved LOD of 0.178 mmol L-1 (0.0-1.2 mmol L-1). The operational and storage lifetime is also evaluated to characterize the sensor properties and resulted in 20 h and 10 days, respectively. The reusable AA contact lens sensor is promising to lead to an alternative accessible diagnostic method for ocular inflammation in point-of-care settings.


Asunto(s)
Técnicas Biosensibles , Lentes de Contacto , Humanos , Monitoreo Fisiológico , Teléfono Inteligente , Inflamación/diagnóstico , Lágrimas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA