Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater Interfaces ; 1(2): 1300085, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25793154

RESUMEN

Understanding the dynamic behavior of switchable surfaces is of paramount importance for the development of controllable and tailor-made surface materials. Herein, electrically switchable mixed self-assembled monolayers based on oligopeptides have been investigated in order to elucidate their conformational mechanism and structural requirements for the regulation of biomolecular interactions between proteins and ligands appended to the end of surface tethered oligopeptides. The interaction of the neutravidin protein to a surface appended biotin ligand was chosen as a model system. All the considerable experimental data, taken together with detailed computational work, support a switching mechanism in which biomolecular interactions are controlled by conformational changes between fully extended ("ON" state) and collapsed ("OFF" state) oligopeptide conformer structures. In the fully extended conformation, the biotin appended to the oligopeptide is largely free from steric factors allowing it to efficiently bind to the neutravidin from solution. While under a collapsed conformation, the ligand presented at the surface is partially embedded in the second component of the mixed SAM, and thus sterically shielded and inaccessible for neutravidin binding. Steric hindrances aroused from the neighboring surface-confined oligopeptide chains exert a great influence over the conformational behaviour of the oligopeptides, and as a consequence, over the switching efficiency. Our results also highlight the role of oligopeptide length in controlling binding switching efficiency. This study lays the foundation for designing and constructing dynamic surface materials with novel biological functions and capabilities, enabling their utilization in a wide variety of biological and medical applications.

3.
Phys Chem Chem Phys ; 15(26): 11014-24, 2013 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-23712584

RESUMEN

Self-assembled monolayers (SAMs) containing azobenzene moieties are very attractive for a wide range of applications, including molecular electronics and photonics, bio-interface engineering and sensoring. However, very little is known about the aggregation and photoswitching behavior that azobenzene units undergo during the SAM formation process. Here, we demonstrate that the formation of thiol-based SAMs containing azobenzenes (denoted as AzoSH) on gold surfaces is characterised by a two-step adsorption kinetics, while a three-step assembly process has been identified for dithiolane-based SAMs containing azobenzenes (denoted AzoSS). The H-aggregation on the AzoSS SAMs was found to be remarkably dependent on the time of self-assembly, with less aggregation as a function of time. While photoisomerization of the AzoSH was suppressed for all different assembly times, the reversible trans-cis photoisomerization of AzoSS SAMs formed over 24 hours was clearly observed upon alternating UV and Vis light irradiation. We contend that detailed information on formation kinetics and related optical properties is of crucial importance for elucidating the photoswitching capabilities of azobenzene-based SAMs.


Asunto(s)
Compuestos Azo/química , Compuestos de Sulfhidrilo/química , Isomerismo , Cinética , Luz , Compuestos de Sulfhidrilo/síntesis química , Rayos Ultravioleta
4.
J Exp Nanosci ; 7(5-6): 634-651, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24273593

RESUMEN

Bacterial adhesion and biofilm formation on surfaces raises health hazard issues in the medical environment. Previous studies of bacteria adhesion have focused on observations in their natural/native environments. Recently, surface science has contributed in advancing the understanding of bacterial adhesion by providing ideal platforms that attempt to mimic the bacteria's natural environments, whilst also enabling concurrent control, selectivity and spatial control of bacterial adhesion. In this review, we will look at techniques of how nanotechnology is used to control cell adhesion on a planar scale, in addition to describing the use of nanotools for cell micropatterning. Additionally, it will provide a general background of common methods for nanoscale modification enabling biologist unfamiliar with nanotechnology to enter the field.

5.
BMC Cell Biol ; 9: 65, 2008 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-19068115

RESUMEN

BACKGROUND: Cells use filopodia to explore their environment and to form new adhesion contacts for motility and spreading. The Arp2/3 complex has been implicated in lamellipodial actin assembly as a major nucleator of new actin filaments in branched networks. The interplay between filopodial and lamellipodial protrusions is an area of much interest as it is thought to be a key determinant of how cells make motility choices. RESULTS: We find that Arp2/3 complex localises to dynamic puncta in filopodia as well as lamellipodia of spreading cells. Arp2/3 complex spots do not appear to depend on local adhesion or on microtubules for their localisation but their inclusion in filopodia or lamellipodia depends on the activity of the small GTPase Rac1. Arp2/3 complex spots in filopodia are capable of incorporating monomeric actin, suggesting the presence of available filament barbed ends for polymerisation. Arp2/3 complex in filopodia co-localises with lamellipodial proteins such as capping protein and cortactin. The dynamics of Arp2/3 complex puncta suggests that they are moving bi-directionally along the length of filopodia and that they may be regions of lamellipodial activity within the filopodia. CONCLUSION: We suggest that filopodia of spreading cells have regions of lamellipodial activity and that this activity affects the morphology and movement of filopodia. Our work has implications for how we understand the interplay between lamellipodia and filopodia and for how actin networks are generated spatially in cells.


Asunto(s)
Proteína 3 Relacionada con la Actina/metabolismo , Angiopoyetinas/metabolismo , Fibroblastos/metabolismo , Seudópodos/metabolismo , Citoesqueleto de Actina/metabolismo , Proteína 2 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Animales , Adhesión Celular , Línea Celular , Movimiento Celular , Citoplasma/ultraestructura , Fibroblastos/ultraestructura , Fibronectinas/metabolismo , Ratones , Neuropéptidos/metabolismo , Unión Proteica , Transporte de Proteínas , Seudópodos/ultraestructura , Transducción de Señal , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1
6.
Nanoscale Res Lett ; 2(8): 373-84, 2007 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-21794192

RESUMEN

Bio-nanopatterning of surfaces is a very active interdisciplinary field of research at the interface between biotechnology and nanotechnology. Precise patterning of biomolecules on surfaces with nanometre resolution has great potential in many medical and biological applications ranging from molecular diagnostics to advanced platforms for fundamental studies of molecular and cell biology. Bio-nanopatterning technology has advanced at a rapid pace in the last few years with a variety of patterning methodologies being developed for immobilising biomolecules such as DNA, peptides, proteins and viruses at the nanoscale on a broad range of substrates. In this review, the status of research and development are described, with particular focus on the recent advances on the use of nanolithographic techniques as tools for biomolecule immobilisation at the nanoscale. Present strengths and weaknesses, as well future challenges on the different nanolithographic bio-nanopatterning approaches are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...