Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Springerplus ; 5(1): 1438, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27652014

RESUMEN

BACKGROUND: This study reported a comprehensive approach (comparing the extraction yields, chemical profiles, antioxidant properties and CYP450-inhibitory effects) to evaluated the effectiveness of various extraction methods [microwave-assisted extraction using water (MAE-W), heat reflux extraction using water (HRE-W), ultrasonic extraction using 70 % ethanol and ultrasonic extraction using ethanol (UE-E)] for Huang-Qin (HQ), the dried root of Scutellaria baicalensis Georgi. RESULTS: The HQ extraction efficiency by MAE-W was the best. The chemical profiles of extracts obtained using HRE-W and MAE-W were similar; whereas more flavones but less flavone glycosides were detected in the UE-E extract. There was no difference in the antioxidant properties among different extracts. In vitro human liver microsome assays illustrated that all extracts possessed herb-drug interaction potentials but the UE-E extract are shown with a potent interaction with CYP3A4-metabolized drugs. CONCLUSION: MAE-W is a favorable method for the preparation of HQ extracts based on extraction yield, pharmacological properties and safety.

2.
Biomed Chromatogr ; 30(12): 1953-1962, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27228199

RESUMEN

The major components, 1-hydroxy-2,3,5-trimethoxy-xanthone (HM-1) and 1,5-dihydroxy-2,3-dimethoxy-xanthone (HM-5) isolated from Halenia elliptica D. Don (Gentianaceae), could cause vasodilatation in rat coronary artery with different mechanisms. In this work, high-performance liquid chromatography coupled to ion trap time-of-flight mass spectrometry (LCMS-IT-TOF) was used to clarify the metabolic pathways, and CYP450 isoform involvement of HM-1 and HM-5 were also studied in rat. At the same time, in vivo inhibition effects of HM-1 and ethyl acetate extracts from origin herb were studied. Three metabolites of HM-5 were found in rat liver microsomes (RLMs); demethylation and hydroxylation were the major phase I metabolic reactions for HM-5. Multiple CYP450s were involved in metabolism of HM-1 and HM-5. The inhibition study showed that HM-5 inhibited Cyp1a2, 2c6 and 2d2 in RLMs. HM-1 inhibited activities of Cyp1a2, Cyp2c6 and Cyp3a2. In vivo experiment demonstrated that both HM-1 and ethyl acetate extracts could inhibit Cyp3a2 in rats. In conclusion, the metabolism of xanthones from the origin herb involved multiple CYP450 isoforms; in vitro, metabolism of HM-5 was similar to that of its parent drug HM-1, but their inhibition effects upon CYP450s were different; in vivo, Cyp3a2 could be inhibited by HM-1 and ethyl acetate extracts.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Gentianaceae/química , Extractos Vegetales/farmacología , Xantonas/farmacología , Animales , Inhibidores Enzimáticos del Citocromo P-450/farmacocinética , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Humanos , Técnicas In Vitro , Masculino , Extractos Vegetales/farmacocinética , Ratas , Ratas Sprague-Dawley , Xantonas/farmacocinética
3.
J Nat Prod ; 78(9): 2266-75, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26339922

RESUMEN

Miltirone (1), an abietane-type diterpene quinone isolated from Salvia miltiorrhiza, possesses anticancer activity in p-glycoprotein (P-gp)-overexpressing human cancer cells. Results of the current study suggest a dual effect of miltirone on P-gp inhibition and apoptotic induction in a human hepatoma HepG2 cell line and its P-gp-overexpressing doxorubicin-resistant counterpart (R-HepG2). Miltirone (1) elicited a concentration-dependent cytotoxicity, with a similar potency (EC50 ≈ 7-12 µM), in HepG2 and R-HepG2 cells. Miltirone (1) (1.56-6.25 µM) produced synergistic effects on doxorubicin (DOX)-induced growth inhibition of R-HepG2 (synergism: 0.3 < combination index < 0.5). Molecular docking studies illustrated that miltirone (1) interacted with the active site of P-gp with a higher binding affinity than DOX, suggesting that it was a P-gp inhibitor. Flow cytometric analysis confirmed miltirone (1) as a competitive inhibitor of P-gp. At non-necrotic concentrations (1.56-25 µM), miltirone (1) activated caspase-dependent apoptotic pathways and triggered the generation of reactive oxygen species (ROS) and ROS-mediated mitogen-activated protein kinase (MAPK) signaling pathways (e.g., p38 MAPK, stress-activated protein kinase/c-Jun N-terminal kinase, and extracellular regulated kinase 1/2) in both HepG2 and R-HepG2 cells. Thus, we conclude that miltirone (1) is a dual inhibitor of P-gp and cell growth in human drug-resistant hepatoma cells.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/efectos de los fármacos , Doxorrubicina/farmacología , Fenantrenos/farmacología , Salvia miltiorrhiza/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Apoptosis/efectos de los fármacos , Caspasas/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Células Hep G2 , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias Hepáticas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estructura Molecular
4.
Chem Biol Interact ; 230: 1-8, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25686904

RESUMEN

OBJECTIVES: This study aimed to investigate the effects of five tanshinones, the lipophilic components from Danshen (Salvia miltiorrhiza), on CYP2C19 activity in pooled human liver microsomes (HLMs). METHODS: The effects of tanshinones on CYP2C19 activity were compared by enzyme inhibition study using omeprazole 5-hydroxylation in pooled HLMs. The inhibition constant (Ki) values and inhibition modes of effective tanshinones were evaluated by enzyme kinetic study. Molecular docking analysis was used to simulate the binding conformations of tanshinones to the active cavity of human CYP2C19. RESULTS: Dihydrotanshinone and miltirone showed potent inhibitory effects on CYP2C19 activity in a concentration-dependent manner. Tanshinone I showed weaker inhibitory effect, whereas tanshinone IIA and cryptotanshinone had no inhibitory effect. Further enzyme kinetic study showed that the inhibition by dihydrotanshinone and miltirone was a mixed type. The effects of tanshinones were also confirmed by a molecular docking study. Besides, the ethanol extract of Danshen also showed a mixed type of inhibition, whereas the water extract had no inhibitory effect. CONCLUSIONS: The current findings demonstrate the inhibition of CYP2C19 activity by the ethanol extract of Danshen and its components tanshinones, implicating the potential herb-drug interactions between Danshen and therapeutic agents metabolized by CYP2C19 in clinical practice.


Asunto(s)
Abietanos/farmacología , Inhibidores del Citocromo P-450 CYP2C19/farmacología , Citocromo P-450 CYP2C19/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Salvia miltiorrhiza/química , Dominio Catalítico , Simulación por Computador , Citocromo P-450 CYP2C19/química , Inhibidores del Citocromo P-450 CYP2C19/química , Inhibidores del Citocromo P-450 CYP2C19/metabolismo , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Etanol , Interacciones de Hierba-Droga , Humanos , Hidroxilación , Cinética , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Fenantrenos/química , Fenantrenos/metabolismo , Fenantrenos/farmacología
5.
J Pharm Pharmacol ; 67(7): 980-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25645193

RESUMEN

OBJECTIVES: This study aimed to investigate the protective effects of Danshen (Salvia miltiorrhiza) water extract (DSE) and its major phenolic acid components against CYP2E1-mediated paracetamol (APAP)-induced hepatic toxicity. METHODS: The protection and underlying mechanisms were detected in CYP2E1 overexpression primary rat hepatocytes by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, alamar blue assay, CYP2E1 inhibition assay and glutathione assay. KEY FINDINGS: After APAP treatment, DSE (0.06-1 mg/ml) significantly increased cell viability in MTT assay. Two major components danshensu (8.2-130.5 µm) and salvianolic acid B (Sal B; 3.3-53.5 µm) mainly contributed to this protection, but rosmarinic acid, protocatechuic aldehyde and Sal A did not. Alamar blue assay showed that DSE, danshensu and Sal B maintained mitochondrial metabolic activity. DSE inhibited CYP2E1 (Ki = 1.46 mg/ml) in a mixed mode in rat liver microsomes in vitro; DSE decreased APAP-induced total glutathione depletion and preserved redox status (GSH/GSSG ratio) in hepatocytes. Danshensu and Sal B did not inhibit CYP2E1 or decrease total glutathione depletion, but preserved redox status. CONCLUSIONS: DSE protected hepatocytes against APAP-induced injury via maintenance of mitochondrial metabolic activity, CYP2E1 inhibition, reduction of total glutathione depletion and preservation of redox status. Danshensu and Sal B were mainly responsible for this protection.


Asunto(s)
Acetaminofén/farmacología , Citocromo P-450 CYP2E1/metabolismo , Hepatocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Salvia miltiorrhiza/química , Agua/química , Animales , Benzofuranos/química , Benzofuranos/farmacología , Supervivencia Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Glutatión/metabolismo , Hepatocitos/metabolismo , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacología , Lactatos/química , Lactatos/farmacología , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Extractos Vegetales/química , Ratas , Ratas Sprague-Dawley
6.
Phytomedicine ; 21(11): 1264-72, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25172788

RESUMEN

OBJECTIVE: Multidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer drugs is an obstacle to successful chemotherapy. Overexpression of P-glycoprotein (P-gp), an ATP-binding cassette (ABC) membrane transporter, can mediate the efflux of cytotoxic drugs out of cancer cells, leading to MDR and chemotherapy failure. Thus, development of safe and effective P-gp inhibitors plays an important role in circumvention of MDR. This study investigated the reversal of P-gp mediated multidrug resistance in colon cancer cells by five tanshinones including tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone and miltirone isolated from Salvia miltiorrhiza (Danshen), known to be safe in traditional Chinese medicine. METHODS: The inhibitory effects of tanshinones on P-gp function were compared using digoxin bi-directional transport assay in Caco-2 cells. The potentiation of cytotoxicity of anticancer drugs by effective tanshinones were evaluated by MTT assay. Doxorubicin efflux assay by flow cytometry, P-gp protein expression by western blot analysis, immunofluorescence for P-gp by confocal microscopy, quantitative real-time PCR and P-gp ATPase activity assay were used to study the possible underlying mechanisms of action of effective tanshinones. RESULTS: Bi-directional transport assay showed that only cryptotanshinone and dihydrotanshinone decreased digoxin efflux ratio in a concentration-dependent manner, indicating their inhibitory effects on P-gp function; whereas, tanshinone I, tanshinone IIA and miltirone had no inhibitory effects. Moreover, both cryptotanshinone and dihydrotanshinone could potentiate the cytotoxicity of doxorubicin and irinotecan in P-gp overexpressing SW620 Ad300 colon cancer cells. Results from mechanistic studies revealed that these two tanshinones increased intracellular accumulation of the P-gp substrate anticancer drugs, presumably by down-regulating P-gp mRNA and protein levels, and inhibiting P-gp ATPase activity. CONCLUSIONS: Taken together, these findings suggest that cryptotanshinone and dihydrotanshinone could be further developed for sensitizing resistant cancer cells and used as an adjuvant therapy together with anticancer drugs to improve their therapeutic efficacies for colon cancer.


Asunto(s)
Abietanos/farmacología , Antineoplásicos Fitogénicos/farmacología , Fenantrenos/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Células CACO-2 , Camptotecina/análogos & derivados , Camptotecina/farmacología , Digoxina/farmacología , Doxorrubicina/farmacología , Medicamentos Herbarios Chinos/farmacología , Furanos , Regulación Neoplásica de la Expresión Génica , Humanos , Irinotecán , Quinonas , Salvia miltiorrhiza/química
7.
Chem Biol Interact ; 220: 33-40, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24928742

RESUMEN

FR429, an ellagitannin (a type of polyphenol), is isolated and purified from Polygonum capitatum Buch.-Ham.ex D. Don which is the original herbal medicine of the "Re-Lin-Qing" formula used clinically to treat urinary tract infection in China. FR429 has been investigated for its antitumor potential in tumor-bearing nude mice in vivo, but its in vitro anti-tumor effect in hepatoma cell lines was low. Thus, it was of our interest to investigate its metabolism pathways for supporting its in vivo antitumor potential. The metabolic profiles of FR429 were studied in vitro by liquid chromatography coupled to ion trap time-of-flight mass spectrometry. Total eight metabolites were identified in rat and human liver microsomes, cytosol, and rat primary hepatocytes in vitro. Ellagic acid, a reported anti-angiogenic agent, was one of the main metabolites in these biological matrices. Methylated metabolites catalyzed by catechol-O-methyl transferase (COMT) were observed mainly in the in vitro incubation with rat liver cytosol, which was verified by using a COMT specific inhibitor entacapone and supported by molecular docking analysis. Methylated and sulfated metabolites were also found in rat primary hepatocytes in a time-dependent manner. In conclusion, the in vitro metabolism pathways of FR429 were hydrolysis, methylation and sulfation. The anti-tumor effects of its major metabolites should be further studied.


Asunto(s)
Citosol/química , Glucósidos/química , Hepatocitos/metabolismo , Taninos Hidrolizables/química , Taninos Hidrolizables/metabolismo , Microsomas Hepáticos/metabolismo , Polygonum/química , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Dominio Catalítico , Glucósidos/farmacología , Hepatocitos/química , Humanos , Taninos Hidrolizables/farmacología , Metabolómica , Ratones , Microsomas Hepáticos/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Ratas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
Chin J Nat Med ; 12(3): 167-71, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24702801

RESUMEN

AIM: This study was designed to evaluate the anti-cancer actions of tanshinone I and tanshinone IIA, and six derivatives of tanshinone IIA on normal and cancerous colon cells. Structure activity relationship (SAR) analysis was conducted to delineate the significance of the structural modifications of tanshinones for improved anti-cancer action. METHOD: Tanshinone derivatives were designed and synthesized according to the literature. The cytotoxicity of different compounds on colon cancer cells was determined by the MTT assay. Apoptotic activity of the tanshinones was measured by flow cytometry (FCM). RESULTS: Tanshinone I and tanshinone IIA both exhibited significant cytotoxicity on colon cancer cells. They are more effective in p53(+/+) colon cancer cell line. It was also noted that the anti-cancer activity of tanshinone I was more potent and selective. Two of the derivatives of tanshinone IIA (N1 and N2) also exhibited cytotoxicity on colon cancer cells. CONCLUSION: The anti-colon cancer activity of tanshinone I was more potent and selective than tanshinone IIA, and is p53 dependent. The derivatives obtained by structural modifications of tanshinone IIA exhibited lower cytotoxicity on both normal and colon cancer cells. From steric and electronic characteristics point of view, it was concluded that structural modifications of ring A and furan or dihydrofuran ring D on the basic structure of tanshinones influences the activity. An increase of the delocalization of the A and B rings could enhance the cytotoxicity of such compounds, while a non-planar and small sized D ring region would provide improved anti-cancer activity.


Asunto(s)
Abietanos/farmacología , Antineoplásicos Fitogénicos/farmacología , Colon/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Fitoterapia , Salvia miltiorrhiza/química , Abietanos/química , Abietanos/uso terapéutico , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/uso terapéutico , Línea Celular , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Células HCT116 , Células HT29 , Humanos , Relación Estructura-Actividad
9.
Chem Biol Interact ; 210: 12-9, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24380714

RESUMEN

1-Hydroxyl-2,3,5-trimethoxyxanthone (HM-1) is one of the main constituents extracted from Halenia elliptica D. Don, which is a traditionally used Tibetan medicinal plant. The aim of this study was to illustrate the proposed metabolic pathways of HM-1 and identify which cytochrome P450 (CYP450) isoforms involved in its metabolism by using pooled human liver microsomes (HLMs) and recombinant CYP450 isoforms with selective chemical inhibitors. Metabolites were identified by high performance liquid chromatography coupled to ion trap time-of-flight mass spectrometry (LCMS(n)-ESI-IT-TOF) and nuclear magnetic resonance spectroscopy (hydrogen-1 NMR and carbon-13 NMR). Three metabolites (M1-M3) were identified, which demonstrated that demethylation and hydroxylation were the major Phase I metabolic reactions for HM-1 in HLMs. The structure of another metabolite (M4) was still unclear. The enzymatic kinetics of M1 (K(m)=23.19±14.20 µM) and M2 (Km=32.06±17.09 µM) exhibited substrate inhibition; whereas, the formation of M3 (K(m)=5.73±0.70 µM) and M4 (K(m)=16.43±5.12 µM) displayed Michaelis-Menten kinetics. The intrinsic clearance (V(max)/K(m)) of M3 was highest among these metabolites, suggesting that M3 was the major metabolite of HM-1. Moreover, CYP3A4 and CYP2C8 were the primary CYP450 isoform responsible for the metabolism of HM-1. CYP1A2, CYP2A6, CYP2B6, CYP2C9 and CYP2C19 were also involved in HM-1 metabolism, especially in the formation of M3. This study finally provides evidence of substrate inhibition and metabolism-based drug-drug interaction for the medicinal preparations containing HM-1 used in clinic.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Gentianaceae/química , Microsomas Hepáticos/enzimología , Plantas Medicinales/química , Xantonas/metabolismo , Cromatografía Líquida de Alta Presión , Sistema Enzimático del Citocromo P-450/química , Gentianaceae/metabolismo , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Estructura Molecular , Plantas Medicinales/metabolismo , Isoformas de Proteínas , Tibet , Xantonas/química
10.
Phytomedicine ; 20(3-4): 367-74, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23102508

RESUMEN

Previous studies have shown that major tanshinones isolated from Danshen (Salvia miltiorrhiza) inhibited human and rat CYP450 enzymes-mediated metabolism of model probe substrates, with potential in causing herb-drug interactions. Miltirone, another abietane type-diterpene quinone isolated from Danshen, has been reported for its anti-oxidative, anxiolytic and anti-cancer effects. The aim of this study was to study the effect of miltirone on the metabolism of model probe substrates of CYP1A2, 2C9, 2D6 and 3A4 in pooled human liver microsomes. Miltirone showed moderate inhibition on CYP1A2 (IC(50)=1.73 µM) and CYP2C9 (IC(50)=8.61 µM), and weak inhibition on CYP2D6 (IC(50)=30.20 µM) and CYP3A4 (IC(50)=33.88 µM). Enzyme kinetic studies showed that miltirone competitively inhibited CYP2C9 (K(i)=1.48 µM), and displayed mixed type inhibitions on CYP1A2, CYP2D6 and CYP3A4 with K(i) values of 3.17 µM, 24.25 µM and 35.09 µM, respectively. Molecular docking study further confirmed the ligand-binding conformations of miltirone in the active sites of these human CYP450 isoforms, and provided some information on structure-activity relationships for the CYPs inhibition by tanshinones. Taken together, CYPs inhibitions of miltirone were weaker than dihydrotanshinone, but stronger than cryptotanshinone, tanshinone I and tanshinone IIA.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450 , Medicamentos Herbarios Chinos/farmacología , Fenantrenos/farmacología , Salvia miltiorrhiza/química , Dextrometorfano , Interacciones de Hierba-Droga , Humanos , Cinética , Microsomas Hepáticos , Simulación del Acoplamiento Molecular , Fenacetina , Testosterona , Tolbutamida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA