Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38521861

RESUMEN

The majority of lifetime smokers begin using nicotine during adolescence, a critical period of brain development wherein neural circuits critical for mood, affect and cognition are vulnerable to drug-related insults. Specifically, brain regions such as the medial prefrontal cortex (mPFC), the ventral tegmental area (VTA), nucleus accumbens (NAc) and hippocampus, are implicated in both nicotine dependence and pathological phenotypes linked to mood and anxiety disorders. Clinical studies report that females experience higher rates of mood/anxiety disorders and are more resistant to smoking cessation therapies, suggesting potential sex-specific responses to nicotine exposure and later-life neuropsychiatric risk. However, the potential neural and molecular mechanisms underlying such sex differences are not clear. In the present study, we compared the impacts of adolescent nicotine exposure in male vs. female rat cohorts. We performed a combination of behavioral, electrophysiological and targeted protein expression analyses along with matrix assisted laser deionization imaging (MALDI) immediately post-adolescent exposure and later in early adulthood. We report that adolescent nicotine exposure induced long-lasting anxiety/depressive-like behaviors, disrupted neuronal activity patterns in the mPFC-VTA network and molecular alterations in various neural regions linked to affect, anxiety and cognition. Remarkably, these phenotypes were only observed in males and/or were expressed in the opposite direction in females. These findings identify a series of novel, sex-selective biomarkers for adolescent nicotine-induced neuropsychiatric risk, persisting into adulthood.

2.
Mol Psychiatry ; 28(10): 4234-4250, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37525013

RESUMEN

With increasing maternal cannabis use, there is a need to investigate the lasting impact of prenatal exposure to Δ9-tetrahydrocannabinol (THC), the main psychotropic compound in cannabis, on cognitive/memory function. The endocannabinoid system (ECS), which relies on polyunsaturated fatty acids (PUFAs) to function, plays a crucial role in regulating prefrontal cortical (PFC) and hippocampal network-dependent behaviors essential for cognition and memory. Using a rodent model of prenatal cannabis exposure (PCE), we report that male and female offspring display long-term deficits in various cognitive domains. However, these phenotypes were associated with highly divergent, sex-dependent mechanisms. Electrophysiological recordings revealed hyperactive PFC pyramidal neuron activity in both males and females, but hypoactivity in the ventral hippocampus (vHIPP) in males, and hyperactivity in females. Further, cortical oscillatory activity states of theta, alpha, delta, beta, and gamma bandwidths were strongly sex divergent. Moreover, protein expression analyses at postnatal day (PD)21 and PD120 revealed primarily PD120 disturbances in dopamine D1R/D2 receptors, NMDA receptor 2B, synaptophysin, gephyrin, GAD67, and PPARα selectively in the PFC and vHIPP, in both regions in males, but only the vHIPP in females. Lastly, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS), we identified region-, age-, and sex-specific deficiencies in specific neural PUFAs, namely docosahexaenoic acid (DHA) and arachidonic acid (ARA), and related metabolites, in the PFC and hippocampus (ventral/dorsal subiculum, and CA1 regions). This study highlights several novel, long-term and sex-specific consequences of PCE on PFC-hippocampal circuit dysfunction and the potential role of specific PUFA signaling abnormalities underlying these pathological outcomes.


Asunto(s)
Disfunción Cognitiva , Lipidómica , Masculino , Femenino , Embarazo , Humanos , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Hipocampo/metabolismo , Disfunción Cognitiva/metabolismo
3.
ACS Omega ; 8(27): 24561-24572, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37457466

RESUMEN

Many diverse species of fungi naturally occur as endophytes in plants. The majority of these fungi produce secondary metabolites of diverse structures and biological activities. Culture extracts from 288 fungi isolated from surface-sterilized blueberries, cranberries, raspberries, and grapes were analyzed by LC-HRMS/MS. Global Natural Products Social (GNPS) Molecular Networking modeling was used to investigate the secondary metabolites in the extracts. This technique increased the speed and simplicity of dereplicating the extracts, targeting new compounds that are structurally related. In total, 60 known compounds were dereplicated from this collection and seven new compounds were identified. These previously unknown compounds are targets for purification, characterization, and bioactivity testing in future studies. The fungal endophytes characterized in this study are potential candidates for providing bio-protection to the host plant with a reduced reliance on chemical pesticides.

4.
Environ Toxicol Chem ; 42(8): 1709-1720, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37283207

RESUMEN

Metformin, used to treat Type 2 diabetes, is the active ingredient of one of the most prescribed drugs in the world, with over 120 million yearly prescriptions globally. In wastewater-treatment plants (WWTPs), metformin can undergo microbial transformation to form the product guanylurea, which could have toxicological relevance in the environment. Surface water samples from 2018 to 2020 and sediment samples from 2020 were collected from six mixed-use watersheds in Quebec and Ontario, Canada, and analyzed to determine the metformin and guanylurea concentrations at each site. Metformin and guanylurea were present above their limits of quantification in 51.0% and 50.7% of all water samples and in 64% and 21% of all sediment samples, respectively. In surface water, guanylurea was often present at higher concentrations than metformin, while the inverse was true in sediment, with metformin frequently detected at higher concentrations than guanylurea. In addition, at all sites influenced solely by agriculture, concentrations of metformin and guanylurea were <1 µg/L in surface water, suggesting that agriculture is not a significant source of these compounds in the investigated watersheds. These data suggest that WWTPs and potentially septic system leaks are the most likely sources of the compounds in the environment. Guanylurea was detected at many of these sites above environmental concentrations of concern, where critical processes in fish may be affected. Due to the scarcity of available ecotoxicological data and the prominence of guanylurea across all sample sites, there is a need to perform more toxicological investigations of this transformation product and revisit regulations. The present study will help provide toxicologists with environmentally relevant concentration ranges in Canada. Environ Toxicol Chem 2023;42:1709-1720. © 2023 His Majesty the King in Right of Canada and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Contaminantes Químicos del Agua , Animales , Metformina/química , Hipoglucemiantes/análisis , Quebec , Agua , Ontario , Contaminantes Químicos del Agua/análisis
5.
Neuropsychopharmacology ; 48(3): 540-551, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36402837

RESUMEN

Chronic exposure to Δ-9-tetrahydrocannabinol (THC) during adolescence is associated with long-lasting cognitive impairments and enhanced susceptibility to anxiety and mood disorders. Previous evidence has revealed functional and anatomical dissociations between the posterior vs. anterior portions of the hippocampal formation, which are classified as the dorsal and ventral regions in rodents, respectively. Notably, the dorsal hippocampus is critical for cognitive and contextual processing, whereas the ventral region is critical for affective and emotional processing. While adolescent THC exposure can induce significant morphological disturbances and glutamatergic signaling abnormalities in the hippocampus, it is not currently understood how the dorsal vs. ventral hippocampal regions are affected by THC during neurodevelopment. In the present study, we used an integrative combination of behavioral, molecular, and neural assays in a neurodevelopmental rodent model of adolescent THC exposure. We report that adolescent THC exposure induces long-lasting memory deficits and anxiety like-behaviors concomitant with a wide range of differential molecular and neuronal abnormalities in dorsal vs. ventral hippocampal regions. In addition, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS), we show for the first time that adolescent THC exposure induces significant and enduring dysregulation of GABA and glutamate levels in dorsal vs. ventral hippocampus. Finally, adolescent THC exposure induced dissociable dysregulations of hippocampal glutamatergic signaling, characterized by differential glutamatergic receptor expression markers, profound alterations in pyramidal neuronal activity and associated oscillatory patterns in dorsal vs. ventral hippocampal subregions.


Asunto(s)
Dronabinol , Hipocampo , Dronabinol/farmacología , Hipocampo/metabolismo , Transducción de Señal , Ácido Glutámico/metabolismo , Células Piramidales
6.
eNeuro ; 9(5)2022.
Artículo en Inglés | MEDLINE | ID: mdl-36171057

RESUMEN

Despite increased prevalence of maternal cannabis use, little is understood regarding potential long-term effects of prenatal cannabis exposure (PCE) on neurodevelopmental outcomes. While neurodevelopmental cannabis exposure increases the risk of developing affective/mood disorders in adulthood, the precise neuropathophysiological mechanisms in male and female offspring are largely unknown. Given the interconnectivity of the endocannabinoid (ECb) system and the brain's fatty acid pathways, we hypothesized that prenatal exposure to Δ9-tetrahydrocannabinol (THC) may dysregulate fetal neurodevelopment through alterations of fatty-acid dependent synaptic and neuronal function in the mesolimbic system. To investigate this, pregnant Wistar rats were exposed to vehicle or THC (3 mg/kg) from gestational day (GD)7 until GD22. Anxiety-like, depressive-like, and reward-seeking behavior, electrophysiology, and molecular assays were performed on adult male/female offspring. Imaging of fatty acids using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) was performed at prepubescence and adulthood. We report that PCE induces behavioral, neuronal, and molecular alterations in the mesolimbic system in male and female offspring, resembling neuropsychiatric endophenotypes. Additionally, PCE resulted in profound dysregulation of critical fatty acid pathways in the developing brain lipidome. Female progeny exhibited significant alterations to fatty acid levels at prepubescence but recovered from these deficits by early adulthood. In contrast, males exhibited persistent fatty acid deficits into adulthood. Moreover, both sexes maintained enduring abnormalities in glutamatergic/GABAergic function in the nucleus accumbens (NAc). These findings identify several novel long-term risks of maternal cannabis use and demonstrate for the first time, sex-related effects of maternal cannabinoid exposure directly in the developing neural lipidome.


Asunto(s)
Cannabinoides , Efectos Tardíos de la Exposición Prenatal , Animales , Agonistas de Receptores de Cannabinoides , Dronabinol/toxicidad , Endocannabinoides , Endofenotipos , Ácidos Grasos , Femenino , Humanos , Masculino , Embarazo , Ratas , Ratas Wistar , Transducción de Señal
7.
Waste Manag ; 149: 124-133, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35728476

RESUMEN

The efficient reduction of accumulated waste biomass and red mud by converting them into a value-added magnetic adsorbent is both difficult and tempting in terms of sustainability. This study focused on investigating the reaction mechanism of co-pyrolysis of different biomasses, including pine wood, cellulose, and lignin, with red mud at 500, 650, and 800 °C, and the comprehensive characterizations of the produced bio-magnetic particles. The performance of biomass and red mud based magnetic adsorbents is also evaluated, and their primary adsorption mechanisms for organic pollutants are revealed by using different organic model compounds. The samples produced at 800 °C showed the best performance. For example, the sample prepared using red mud and pine wood at 800 °C showed the highest adsorption capacity of ibuprofen, which was 21.01 mg/g at ∼pH 4.5, indicating strong π stacking interactions as the dominant adsorption mechanism. When compared to lignin-rich biomass, adsorbents composed of cellulose-rich biomass showed greater adsorption efficacy. The findings show that co-pyrolysis of biomass with red mud can reduce waste while also producing a flexible adsorbent that is magnetically separable and effective at absorbing different organic contaminants from water.


Asunto(s)
Pinus , Pirólisis , Adsorción , Biomasa , Celulosa/análisis , Lignina/química , Fenómenos Magnéticos , Pinus/química , Madera/química
8.
J Am Soc Mass Spectrom ; 32(4): 1065-1079, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33783203

RESUMEN

Inorganic nanostructured materials such as silicon, carbon, metals, and metal oxides have been explored as matrices of low-background signals to assist the laser desorption/ionization (LDI) mass spectrometric (MS) analysis of small molecules, but their applications for imaging of small molecules in biological tissues remain limited in the literature. Titanium dioxide is one of the known nanoparticles (NP) that can effectively assist LDI MS imaging of low molecular weight molecules (LMWM). TiO2 NP is commercially available as dispersions, which can be applied using a chemical solution sprayer. However, aggregation of NP can occur in the dispersions, and the aggregated NP can slowly clog the sprayer nozzle. In this work, the use of zinc oxide (ZnO) NP for LDI MS imaging is investigated as a superior alternative due to its dissolution in acidic pH. ZnO NP was found to deliver similar or better results in the imaging of LMWM in comparison to TiO2 NP. The regular acid washes were effective in minimizing clogging and maintaining high reproducibility. High-quality images of mouse sagittal and rat coronal tissue sections were obtained. Ions were detected predominately as Na+ or K+ adducts in the positive ion mode. The number of LMWM detected with ZnO NP was similar to that obtained with TiO2 NP, and only a small degree of specificity was observed.


Asunto(s)
Química Encefálica , Imágenes Hiperespectrales/métodos , Neurotransmisores/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Ratones , Microscopía Electrónica de Rastreo , Peso Molecular , Nanopartículas , Tamaño de la Partícula , Ratas , Titanio , Óxido de Zinc
9.
J Ginseng Res ; 45(1): 156-162, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437167

RESUMEN

BACKGROUND: It is estimated that 20-30% of ginseng crops in Canada are lost to root rot each harvest. This disease is commonly caused by fungal infection with Ilyonectria, previously known as Cylindrocarpon. Previous reports have linked the virulence of fungal disease to the production of siderophores, a class of small-molecule iron chelators. However, these siderophores have not been identified in Ilyonectria. METHODS: High-resolution LC-MS/MS was used to screen Ilyonectria and Cylindrocarpon strain extracts for secondary metabolite production. These strains were also tested for their ability to cause root rot in American ginseng and categorized as virulent or avirulent. The differences in detected metabolites between the virulent and avirulent strains were compared with a focus on siderophores. RESULTS: For the first time, a siderophore N,N',N″-triacetylfusarinine C (TAFC) has been identified in Ilyonectria, and it appears to be linked to disease virulence. Siderophore production was suppressed as the concentration of iron increased, which is in agreement with previous reports. CONCLUSION: The identification of the siderophore produced by Ilyonectria gives us further insight into the root rot disease that heavily affects ginseng crop yields. This research identifies a molecular pathway previously unknown for ginseng root rot and could lead to new disease treatment options.

10.
Anal Chem ; 93(4): 2652-2659, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33464828

RESUMEN

Periventricular white matter hyperintensities (pvWMHs) are a neurological feature detected with magnetic resonance imaging that are clinically associated with an increased risk of stroke and dementia. pvWMHs represent white matter lesions characterized by regions of myelin and axon rarefaction and as such likely involve changes in lipid composition; however, these alterations remain unknown. Lipids are critical in determining cell function and survival. Perturbations in lipid expression have previously been associated with neurological disorders. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is an emerging technique for untargeted, high-throughput investigation of lipid expression and spatial distribution in situ; however, the use of MALDI IMS has been previously been limited by the need for non-embedded, non-fixed, fresh-frozen samples. In the current study, we demonstrate the novel use of MALDI IMS to distinguish regional lipid abnormalities that correlate with magnetic resonance imaging (MRI) defined pvWMHs within ammonium formate washed, formalin-fixed human archival samples. MALDI IMS scans were conducted in positive or negative ion detection mode on tissues sublimated with 2,5-dihydroxybenzoic acid or 1,5-diaminonaphthalene matrices, respectively. Using a broad, untargeted approach to lipid analysis, we consistently detected 116 lipid ion species in 21 tissue blocks from 11 different post-mortem formalin-fixed human brains. Comparing the monoisotopic mass peaks of these lipid ions elucidated significant differences in lipid expression between pvWMHs and NAWM for 31 lipid ion species. Expanding our understanding of alterations in lipid composition will provide greater knowledge of molecular mechanisms underpinning ischemic white matter lesions and provides the potential for novel therapeutic interventions targeting lipid composition abnormalities.


Asunto(s)
Encéfalo/patología , Lípidos/química , Imagen por Resonancia Magnética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Sustancia Blanca/patología , Diagnóstico , Humanos , Sustancia Blanca/metabolismo
11.
Insects ; 12(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374543

RESUMEN

The Colorado potato beetle (CPB) is one of the most adaptable insect pests to both plant toxins and synthetic insecticides. Resistance in CPB is reported for over 50 classes of insecticides, and mechanisms of insecticide-resistance include enhanced detoxification enzymes, ABC transporters and target site mutations. Adaptation to insecticides is also associated with changes in behaviour, energy metabolism and other physiological processes seemingly unrelated to resistance but partially explained through genomic analyses. In the present study, in place of genomics, we applied 2-dimensional (2-D) gel and mass spectrometry to investigate protein differences in abdominal and midgut tissue of insecticide-susceptible (S) and -resistant (R) CPB. The proteomic analyses measured constitutive differences in several proteins, but the highest match was identified as a C-type lectin (CTL), a component of innate immunity in insects. The constitutive expression of the CTL was greater in the multi-resistant (LI) strain, and the same spot was measured in both midgut and abdominal tissue. Exposure to the neonicotinoid insecticide, imidacloprid, increased the CTL spot found in the midgut but not in the abdominal tissue of the laboratory (Lab) strain. No increase in protein levels in the midgut tissue was observed in the LI or a field strain (NB) tolerant to neonicotinoids. With the exception of biopesticides, such as Bacillus thuringiensis (Bt), no previous studies have documented differences in the immune response by CTLs in insects exposed to synthetic insecticides or the fitness costs associated with expression levels of immune-related genes in insecticide-resistant strains. This study demonstrates again how CPB has been successful at adapting to insecticides, plant defenses as well as pathogens.

12.
Metabolites ; 10(6)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32526912

RESUMEN

Alternaria spp. occur as plant pathogens worldwide under field and storage conditions. They lead to food spoilage and also produce several classes of secondary metabolites that contaminate the food production chain. From a food safety perspective, the major challenge of assessing the risk of Alternaria contamination is the lack of a clear consensus on their species-level taxonomy. Furthermore, there are currently no reliable DNA sequencing methods to allow for differentiation of the toxigenic potential of these fungi. Our objective was to determine which species of Alternaria exist in Canada, and to describe the compounds they make. To address these issues, we performed metabolomic profiling using liquid chromatography high-resolution mass spectrometry (LC-HRMS) on 128 Canadian strains of Alternaria to determine their chemotaxonomy. The Alternaria strains were analyzed using principal component analysis (PCA) and unbiased k-means clustering to identify metabolites with significant differences (p < 0.001) between groups. Four populations or 'chemotypes' were identified within the strains studied, and several known secondary metabolites of Alternaria were identified as distinguishing metabolites, including tenuazonic acid, phomapyrones, and altenuene. Though species-level identifications could not be concluded for all groups through metabolomics alone, A. infectoria was able to be identified as a distinct population.

13.
Biomolecules ; 10(3)2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32110860

RESUMEN

Ischemic stroke is a complex and devastating event characterized by cell death resulting from a transient or permanent arterial occlusion. Astrocytic connexin43 (Cx43) gap junction (GJ) proteins have been reported to impact neuronal survival in ischemic conditions. Consequently, Cx43 could be a potential target for therapeutic approaches to stroke. We examined the effect of danegaptide (ZP1609), an antiarrhythmic dipeptide that specifically enhances GJ conductance, in two different rodent stroke models. In this study, danegaptide increased astrocytic Cx43 coupling with no significant effects on Cx43 hemichannel activity, in vitro. Using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) the presence of danegaptide within brain tissue sections were detected one hour after reperfusion indicating successful transport of the dipeptide across the blood brain barrier. Furthermore, administration of danegaptide in a novel mouse brain ischemia/reperfusion model showed significant decrease in infarct volume. Taken together, this study provides evidence for the therapeutic potential of danegaptide in ischemia/reperfusion stroke.


Asunto(s)
Astrocitos/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Dipéptidos/uso terapéutico , Uniones Comunicantes/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Animales , Astrocitos/metabolismo , Astrocitos/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Células Cultivadas , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Uniones Comunicantes/patología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
14.
J Am Soc Mass Spectrom ; 31(3): 479-487, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-31971797

RESUMEN

Matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is used to perform mass spectrometric analysis directly on biological samples providing visual and anatomical spatial information on molecules within tissues. A current obscuration of MALDI-IMS is that it is largely performed on fresh frozen tissue, whereas clinical tissue samples stored long-term are fixed in formalin, and the fixation process is thought to cause signal suppression for lipid molecules. Studies have shown that fresh frozen tissue sections applied with an ammonium formate (AF) wash prior to matrix application in the MALDI-IMS procedure display an increase in observed signal intensity and sensitivity for lipid molecules detected within the brain while maintaining the spatial distribution of molecules throughout the tissue. In this work, we investigate the viability of formalin-fixed tissue imaging in a clinical setting by comparing MALDI data of fresh frozen and postfixed rat brain samples, along with postfixed human brain samples washed with AF to assess the capabilities of ganglioside analysis in MALDI imaging of formalin-fixed tissue. Results herein demonstrate that MALDI-IMS spectra for gangliosides, including GM1, were significantly enhanced in fresh frozen rat brain, formalin-fixed rat brain, and formalin-fixed human brain samples through the use of an AF wash. Improvements in MALDI-IMS image quality were demonstrated, and the spatial distribution of molecules was retained. Results indicate that this method will allow for the analysis of gangliosides from formalin-fixed clinical samples, which can open additional avenues for neurodegenerative disease research.


Asunto(s)
Química Encefálica , Gangliósidos/análisis , Animales , Formaldehído/química , Humanos , Masculino , Ratas , Ratas Wistar , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Fijación del Tejido
15.
Metabolites ; 10(1)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947697

RESUMEN

Ginseng root is an economically valuable crop in Canada at high risk of yield loss caused by the pathogenic fungus Ilyonectria mors-panacis, formerly known as Cylindrocarpon destructans. While this pathogen has been well-characterized from morphological and genetic perspectives, little is known about the secondary metabolites it produces and their role in pathogenicity. We used an untargeted tandem liquid chromatography-mass spectrometry (LC-MS)-based approach paired with global natural products social molecular networking (GNPS) to compare the metabolite profiles of virulent and avirulent Ilyonectria strains. The ethyl acetate extracts of 22 I. mors-panacis strains and closely related species were analyzed by LC-MS/MS. Principal component analysis of LC-MS features resulted in two distinct groups, which corresponded to virulent and avirulent Ilyonectria strains. Virulent strains produced more types of compounds than the avirulent strains. The previously reported I. mors-panacis antifungal compound radicicol was present. Additionally, a number of related resorcyclic acid lactones (RALs) were putatively identified, namely pochonins and several additional derivatives of radicicol. Pochonins have not been previously reported in Ilyonectria spp. and have documented antimicrobial activity. This research contributes to our understanding of I. mors-panacis natural products and its pathogenic relationship with ginseng.

16.
Mol Neurobiol ; 56(5): 3552-3562, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30145786

RESUMEN

Perturbations of ganglioside homeostasis have been observed following stroke whereby toxic simple gangliosides GM2 and GM3 accumulate, while protective complex species GM1 and GD1 are reduced. Thus, there is a need for therapeutic interventions which can prevent ganglioside dysregulation after stroke. A pharmacological intervention using chloroquine was selected for its transient lysosomotropic properties which disrupt the activity of catabolic ganglioside enzymes. Chloroquine was administered both in vitro (0.1 µM), to primary cortical neurons exposed to GM3 toxicity, and in vivo (45 mg/kg i.p.), to 3-month-old male Wistar rats that underwent a severe stroke injury. Chloroquine was administered for seven consecutive days beginning 3 days prior to the stroke injury. Gangliosides were examined using MALDI imaging mass spectrometry at 3 and 21 days after the injury, and motor deficits were examined using the ladder task. Chloroquine treatment prevented ganglioside dysregulation 3 days post-stroke and partially prevented complex ganglioside depletion 21 days post-stroke. Exogenous GM3 was found to be toxic to primary cortical neurons which was protected by chloroquine treatment. Motor deficits were prevented in the forelimbs of stroke-injured rats with chloroquine treatment and was associated with decreased inflammation, neurodegeneration, and an increase in cell survival at the site of injury. Chloroquine administration prevents ganglioside dysregulation acutely, protects against GM3 toxicity in neurons, and is associated with long-term functional and pathological improvements after stroke in the rat. Therefore, targeting lipid dysregulation using lysosomotropic agents such as chloroquine may represent a novel therapeutic avenue for stroke injuries.


Asunto(s)
Conducta Animal , Cloroquina/farmacología , Gangliósidos/metabolismo , Homeostasis/efectos de los fármacos , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Animales , Conducta Animal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Miembro Anterior/patología , Miembro Anterior/fisiopatología , Masculino , Actividad Motora/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas Wistar , Accidente Cerebrovascular/fisiopatología
17.
Rapid Commun Mass Spectrom ; 33(1): 133-139, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30325552

RESUMEN

RATIONALE: Microbial natural products are often biosynthesized as classes of structurally related compounds that have similar tandem mass spectrometry (MS/MS) fragmentation patterns. Mining MS/MS datasets for precursor ions that share diagnostic or common features enables entire chemical classes to be identified, including novel derivatives that have previously been unreported. Analytical data analysis tools that can facilitate a class-targeted approach to rapidly dereplicate known compounds and identify structural variants within complex matrices would be useful for the discovery of new natural products. METHODS: A diagnostic fragmentation filtering (DFF) module was developed for MZmine to enable the efficient screening of MS/MS datasets for class-specific product ions(s) and/or neutral loss(es). This approach was applied to series of the structurally related chaetoglobosin and cytochalasin classes of compounds. These were identified from the culture filtrates of three fungal genera: Chaetomium globosum, a putative new species of Penicillium (called here P. cf. discolor: closely related to P. discolor), and Xylaria sp. Extracts were subjected to LC/MS/MS analysis under positive electrospray ionization and operating in a data-dependent acquisition mode, performed using a Thermo Q-Exactive mass spectrometer. All MS/MS datasets were processed using the DFF module and screened for diagnostic product ions at m/z 130.0648 and 185.0704 for chaetoglobosins, and m/z 120.0808 and 146.0598 for cytochalasins. RESULTS: Extracts of C. globosum and P. cf. discolor strains revealed different mixtures of chaetoglobosins, whereas the Xylaria sp. produced only cytochalasins; none of the strains studied produced both classes of compounds. The dominant chaetoglobosins produced by both C. globosum and P. cf. discolor were chaetoglobosins A, C, and F. Tetrahydrochaetoglobosin A was identified from P. cf. discolor extracts and is reported here for the first time as a natural product. The major cytochalasins produced by the Xylaria sp. were cytochalasin D and epoxy cytochalasin D. A larger unknown "cytochalasin-like" molecule with the molecular formula C38 H47 NO10 was detected from Xylaria sp. culture filtrate extracts and is a current target for isolation and structural characterization. CONCLUSIONS: DFF is an effective LC/MS data analysis approach for rapidly identifying entire classes of compounds from complex mixtures. DFF has proved useful in the identification of new natural products and allowing for their partial characterization without the need for isolation.


Asunto(s)
Citocalasinas/química , Descubrimiento de Drogas/métodos , Alcaloides Indólicos/química , Programas Informáticos , Espectrometría de Masas en Tándem/métodos , Chaetomium/química , Chaetomium/metabolismo , Cromatografía Liquida , Citocalasinas/análisis , Evaluación Preclínica de Medicamentos/métodos , Fermentación , Alcaloides Indólicos/análisis , Metabolómica/métodos , Penicillium/química , Penicillium/metabolismo , Xylariales/química , Xylariales/metabolismo
18.
J AOAC Int ; 101(6): 1940-1947, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29784072

RESUMEN

Background: Neonicotinoids are among the most widely used insecticides. Recently, there has been concern associated with unintended adverse effects on honeybees and aquatic invertebrates at low parts-per-trillion levels. Objective: There is a need for LC-MS/MS methods that are capable of high-throughput measurements of the most widely used neonicotinoids at environmentally relevant concentrations in surface water. Methods: This method allows for quantitation of acetamiprid, clothianidin, imidacloprid, dinotefuran, nitenpyram, thiacloprid, and thiamethoxam in surface water. Deuterated internal standards are added to 20 mL environmental samples, which are concentrated by lyophilisation and reconstituted with methanol followed by acetonitrile. Results: A large variation of mean recovery efficiencies across five different surface water sampling sites within this study was observed, ranging from 45 to 74%. This demonstrated the need for labelled internal standards to compensate for these differences. Atmospheric pressure chemical ionization (APCI) performed better than electrospray ionization (ESI) with limited matrix suppression, achieving 71-110% of the laboratory fortified blank signal. Neonicotinoids were resolved on a C18 column using a 5 min LC method, in which MQL ranged between 0.93 and 4.88 ng/L. Conclusions: This method enables cost effective, accurate, and reproducible monitoring of these pesticides in the aquatic environment. Highlights: Lyophilization is used for high throughput concentration of neonicotinoids in surface water. Variations in matrix effects between samples was greatly reduced by using APCI compared with ESI. Clothianidin and thiamethoxam were detected in all samples with levels ranging from below method quantitation limit to 65 ng/L.


Asunto(s)
Cromatografía Liquida/métodos , Contaminación Ambiental/análisis , Insecticidas/análisis , Neonicotinoides/análisis , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis , Agua/química , Liofilización
19.
Biochim Biophys Acta Gen Subj ; 1862(6): 1327-1338, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29545134

RESUMEN

BACKGROUND: Accumulation of simple gangliosides GM2 and GM3, and gangliosides with longer long-chain bases (d20:1) have been linked to toxicity and the pathogenesis of Alzheimer's disease (AD). Conversely, complex gangliosides, such as GM1, have been shown to be neuroprotective. Recent evidence using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) has demonstrated that a-series gangliosides are differentially altered during normal aging, yet it remains unclear how simple species are shifting relative to complex gangliosides in the prodromal stages of AD. METHODS: Ganglioside profiles in wild-type (Wt) and transgenic APP21 Fischer rats were detected and quantified using MALDI-IMS at P0 (birth), 3, 12, and 20 months of age and each species quantified to allow for individual species comparisons. RESULTS: Tg APP21 rats were found to have a decreased level of complex gangliosides in a number of brain regions as compared to Wt rats and showed higher levels of simple gangliosides. A unique pattern of expression was observed in the white matter as compared to gray matter regions, with an age-dependent decrease in GD1 d18:1 species observed and significantly elevated levels of GM3 in Tg APP21 rats. CONCLUSIONS: These results are indicative of a pathological shift in ganglioside homeostasis during aging that is exacerbated in Tg APP21 rats. GENERAL SIGNIFICANCE: Ganglioside dysregulation may occur in the prodromal stages of neurodegenerative diseases like AD.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad , Gangliósidos/metabolismo , Homeostasis , Lípidos de la Membrana/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Enfermedad de Alzheimer/patología , Animales , Humanos , Ratas , Ratas Endogámicas F344
20.
Rapid Commun Mass Spectrom ; 32(12): 951-958, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-29575411

RESUMEN

RATIONALE: This work focuses on direct matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) detection of intraperitoneally (IP)-injected dipeptide ZP1609 in mouse brain tissue. Direct analysis of drug detection in intact tissue sections provides distribution information that can impact drug development. MALDI-IMS capabilities of uncovering drug transport across the blood-brain barrier are demonstrated. METHODS: Successful peptide detection using MALDI-IMS was achieved using a MALDI TOF/TOF system. Upon optimization of sample preparation procedures for dipeptide ZP1609, an additional tissue acidification procedure was found to greatly enhance signal detection. The imaging data acquired was able to determine successful transport of ZP1609 across the blood-brain barrier. Data obtained from MALDI-IMS can help shape our understanding of biological functions, disease progression, and effects of drug delivery. RESULTS: Direct detection of ZP1609 throughout the brain tissue sections was observed from MALDI-MS images. However, in cases where there was induction of stroke, a peak of lower signal intensity was also detected in the target m/z region. Although distinct differences in signal intensity can be seen between control and experimental groups, fragments and adducts of ZP1609 were investigated using MALDI-IMS to verify detection of the target analyte. CONCLUSIONS: Overall, the data reveals successful penetration of ZP1609 across the blood-brain barrier. The benefits of tissue acidification in the enhancement of detection sensitivity for low-abundance peptides were demonstrated. MALDI-IMS has been shown to be a useful technique in the direct detection of drugs within intact brain tissue sections.


Asunto(s)
Encéfalo/metabolismo , Dipéptidos/farmacocinética , Sustancias Protectoras/farmacocinética , Daño por Reperfusión/tratamiento farmacológico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Dipéptidos/administración & dosificación , Dipéptidos/uso terapéutico , Monitoreo de Drogas/métodos , Inyecciones Intraperitoneales , Ratones , Ratones Endogámicos C57BL , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...