Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 12(6)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37370336

RESUMEN

Indole, a metabolite of the amino acid tryptophan, has been proven to act as a signal molecule in bacteria, acting in different aspects of biofilm formation. The oral biofilm is a type of biofilm that has consequences for human health. It is a complex, three-dimensional structure that develops on the surface of teeth via the attachment of primary microbial colonizers. Many oral infections are caused by an imbalance occurring in the microorganisms naturally found in oral biofilms and are considered major public health concerns. In this study, we test the effect of a natural bis-indole, 3,3'-Diindolylmethane (DIM), in mitigating the pathogenicity of the oral biofilm inhabiting bacterium Streptococcus mutans, a bacterium that is considered to be a principal etiological agent in dental caries. Our study found that DIM was able to attenuate S. mutans biofilm formation by 92%. Additionally, treatment with DIM lowered extracellular polymeric substance (EPS) production and decreased its durability significantly under acidic conditions. Therefore, the anti-biofilm and anti-virulence properties of DIM against S. mutans bacteria in an "oral setting" provides evidence for its usefulness in reducing biofilm formation and potentially for caries attenuation.

2.
Bioresour Technol ; 385: 129354, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37336453

RESUMEN

This study investigated the fate of antibiotic resistance genes (ARGs) and bacterial evolution in six industrial-scale organic wastes aerobic composting plants and identified key factors driving ARGs dynamics. A total of 226 ARGs and 46 mobile genetic elements (MGEs), mainly resistant to aminoglycoside and MLSB, were detected by high-throughput qPCR. Briefly, aerobic composting showed good performance in reducing the diversity and abundance of ARGs, where the total absolute abundance was reduced by 88.34%-97.08% except for cattle manures. Rapid composting may lead to a rebound of ARGs due to long-term storage compared to traditional composting. Hub ARGs and bacterial genera were screened out by co-occurrence patterns. As the dominant phyla in composting, the main potential hosts of ARGs were Firmicutes, Bacteroidota and Proteobacteria. Structural equation model indicated that MGEs and heavy metals were key factors affecting ARGs dynamics. In addition, nutrients and bacterial α-diversity can indirectly influence ARGs by affecting MGEs.


Asunto(s)
Compostaje , Genes Bacterianos , Animales , Bovinos , Genes Bacterianos/genética , Antibacterianos/farmacología , Antibacterianos/análisis , Residuos Industriales/análisis , Bacterias , Estiércol/microbiología
3.
J Environ Manage ; 326(Pt B): 116730, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36399808

RESUMEN

The increasing occurrence of cyanobacteria blooms is of global concern, and is often associated with environmental and socio-economic problems, such as degenerated ecosystems and aquaculture impairment. The diazotrophic cyanobacterium Raphidiopsis raciborskii (R. raciborskii) grows rapidly in the tropics, and produces the toxin, cylindrospermopsin (CYN), which has harmful effects on aquatic organisms. Thus, to protect water quality and ecosystem, it is essential to have rapid and reliable methods for cyanobacteria and R. raciborskii detection and prediction so that early warning can be provided for management. Molecular assays, such as PCR, real-time quantitative PCR (qPCR), two-step PCR assays are accurate and widely used, but still require several hours from sample preparation to data analysis. In this study, insulated isothermal PCR (iiPCR) assays in conjunction with fast DNA extraction method, were developed and verified as a rapid detection assay in detecting cyanobacteria and R. raciborskii within 50 min, and also with high detection accuracy (98.8%) and the overall high agreement level (98.8%, k = 97.5%)) comparing to conventional qPCR assay. However, the limitation of the iiPCR assay is that it only generates qualitative results. Therefore, the quantified iiPCR assay, named as A-iiPCR, by coupling iiPCR device with fluorescence signal catching and interpretation instrument (Andor spectrometer with Solis spectroscopy software) was developed and verified with in situ environmental samples. The fluorescence intensity decreased accordingly with the drop of DNA concentration until reaching 1.32 ng/µL. Also, Delft 3D modelling was established to simulate R. raciborskii change in predicting spatial and temporal variabilities for reservoir management, as the simulated R. raciborskii concentration was the highest at sampling site 1, as well as temporally highest in April and October, posing as the most high-risk location and time periods for R. raciborskii bloom-forming requiring corresponding governance measures.


Asunto(s)
Cianobacterias , Ecosistema , Reacción en Cadena de la Polimerasa/métodos
4.
J Environ Manage ; 311: 114889, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35287073

RESUMEN

Cyanobacterial blooms challenge the safe water supply in estuary reservoirs. Yet, data are limited for the variation of phytoplankton dynamics during an algal bloom event at refined scales, which is essential for interpreting the formation and cessation of blooms. The present study investigated the biweekly abundances and dynamics of pico- and nano-phytoplankton in a tropical estuary lake following a prolonged bloom event. Flow cytometry analysis resolved eight phenotypically distinct groups of phytoplankton assigned to nano-eukaryotes (nano-EU), pico/nano-eukaryotes (PicoNano-EU), cryptophyte-like cells (CRPTO), Microcystis-like cells (MIC), pico-eukaryotes (Pico-EU) and three groups of Synechococcus-like cells. Total phytoplankton abundance ranged widely from 2.4 × 104 to 2.8 × 106 cells cm-3. The phytoplankton community was dominated by Synechococcus-like cells with high phycocyanin content (SYN-PC). Temporal dynamics of the phytoplankton community was phytoplankton- and site-specific. Peak values were observed for SYN-PC, SYN-PE2 (Synechococcus-like cells with low levels of phycoerythrin) and Pico-EU, while the temporal dynamics of other groups were less pronounced. Redundancy analysis (RDA) showed the importance of turbidity as an abiotic factor in the formation of the current SYN-PC induced blooms, and Spearman correlation analysis suggested a competitive relationship between SYN-PC and Pico-EU.

5.
Water Res ; 162: 127-138, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31260828

RESUMEN

With the rapid construction of dams worldwide, reservoir system has become a representation of modern aquatic environment. However, the profiles of antibiotic resistance genes (ARGs) and associated factor influencing their dynamics in modern aquatic environment (e.g., water phase, sediment phase, and soil phase) are largely unknown. Here, we comprehensively characterized the diversity, abundance, distribution of ARGs in a large drinking water reservoir using high-throughput quantitative PCR, as well as ranked the factors (e.g., mobile genetic elements (MGEs), bacteria community, bacterial biomass, antibiotics, and basic properties) influencing the profiles of ARGs on the basis of structural equation models (SEMs). Water phase was prone to harbor more diverse ARGs as compared to sediment phase and soil phase, and soil phase in drawdown area was a potential reservoir and hotspot for ARGs. Environmental media partially affected the ARG diversity in modern aquatic environment, while it observably influenced the distributions of ARGs and MGEs and their co-occurrence patterns. The pathways for the proliferation and spread of ARGs in water phase were both the horizontal gene transfer (HGT) and vertical gene transfer (VGT), while the dominant pathways in sediment phase and soil phase were the HGT and VGT, respectively. The SEMs demonstrated that MGEs contributed the most to drive the ARG dynamics in both water phase and sediment phase, while the most dominant factor for this in soil phase was bacterial community. Overall, environmental media exerted a bottleneck in driving the dynamics of ARGs in modern aquatic environment probably via diversifying the MGEs, bacterial community, bacterial biomass, antibiotics and basic properties.


Asunto(s)
Antibacterianos , Genes Bacterianos , Bacterias , Farmacorresistencia Microbiana , Suelo
6.
Water Res ; 154: 227-237, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30798177

RESUMEN

Ecotoxicological risks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in surface waters are difficult to model because data on PFASs distribution in multiple compartments (sediments, suspended particles and aqueous phase) are difficult to predict. This study quantified the distribution of 21 PFASs including PFCAs: C6-C13 perfluoroalkyl carboxylates, C4, C6, C8 and C10 perfluoroalkane sulfonates, 5 perfluorooctane sulfonamide substances (FOSAMs, including EtFOSA, FOSA, MeFOSAA, EtFOSAA, FOSAA), 2 N-alkyl perfluoroalkane sulfonamidoethanols (MeFOSE and EtFOSE), bis (perfluorooctyl) phosphinic acid (C8/C8 PFPIA), and 5:3 fluorotelomer carboxylic acid (5:3 acid) between bulk water and suspended particles in water column, and pore water and benthic sediments from a tropical urban water body. The distribution of PFASs between sorbed and dissolved phase was largely dependent on the perfluoroalkyl chain length (NCF2). PFCAs with NCF2 > 11 and perfluorodecane sulfonate (PFDS, NCF2 = 10) were found predominantly in the suspended particles and sediments. By contrast, short-chain PFASs (NCF2 ≤ 7) were detected predominantly in the dissolved phase. Sediment acts as a sink for long-chain PFASs while short-chain PFASs are more easily transported via the aqueous phase. Compared with benthic sediments, suspended particles, especially those in the top water layer, carried much higher concentrations of PFASs (by a factor of >100), indicating the stronger sorption capability of suspended particles. The wide variation in PFAS concentrations in suspended particles (∑PFASs concentrations: < 26.8-1,284 ng/g d.w.) suggests that some suspended particles were preloaded with different concentrations of PFASs in the water column which could highly affect the distribution of PFASs in the aquatic environment. Pore water contained 1-2 times higher concentrations of PFASs (∑PFASs: <20.25-159.34 ng/L) than overlying bulk water (∑PFASs: <14.2-79.98 ng/L), indicating the accumulation of PFASs in pore water. Distribution coefficients (KD) were calculated using paired solids concentration and dissolved concentration in both water and sediment column (KD-SP and KD-SED respectively) and were compared with values derived from a laboratory batch experiment. The averaged Log KD-SP/Log KD-SED showed significant positive correlation with NCF2, except for short-chain PFASs (NCF2 <5) which presented higher Log KD values than estimated. The discrepancies found between KD (Log KD-SP > Log KD -desorption > Log KD -sorption > Log KD-SED) suggest that the distribution of PFASs in the field, especially between suspended particles and bulk water could not be well represented by lab results and that using the water concentrations in the bottom layer for estimation of pore water concentrations could lead to bias results.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Carboxílicos , Ecotoxicología , Monitoreo del Ambiente , Agua
7.
Environ Sci Process Impacts ; 20(7): 1030-1045, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-29900462

RESUMEN

PPCPs and pesticides have been documented throughout the world over the years, yet relatively little is known about the factors affecting their spatial distribution and temporal change in order to know their potential risk to the ecosystem or human health in the future. In our study, 5 PPCPs and 9 pesticides were selected to study their occurrence, impact variables and potential risk in a drinking water reservoir in Yangtze Estuary and related drinking water treatment plants (DWTPs) in China. The detection results showed the presence of PPCPs and pesticides reflected in a large part of croplands and urban and built-up land in the adjacent basin. The discrepancy of concentration among the different PPCPs and pesticides was mainly decided by their application amount or daily usage. Then, the major factors regulating the occurrence of these contaminants in the surface water were found as the living expenditure attributed to food and medicine based on a correlation analysis. Also, the PPCPs were found to negatively correlate to the effectiveness of sewage management. The detection of the PPCPs and pesticides in DWTPs indicated that, except for atrazine and simazine, the removal percentages were increased significantly in advanced DWTPs. Moreover, risk assessment estimated by a Risk Quotient and Hazard Quotient showed that while caffeine, bisphenol A, estrone and simazine were at a high-risk level in the reservoir water, all of the contaminants detected posed no risk to human health through drinking water. It's possible that atrazine could pose a high risk to the ecosystem while simazine could pose a risk to human health in the future considering the increasing expenditure attributed to food.


Asunto(s)
Agua Potable/análisis , Monitoreo del Ambiente/métodos , Plaguicidas/análisis , Preparaciones Farmacéuticas/análisis , Aguas del Alcantarillado/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , China , Estuarios , Humanos , Medición de Riesgo
8.
Chemosphere ; 202: 576-585, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29597175

RESUMEN

This study employed high-throughput sequencing (HTS) to understand the variations in microbial community in the largest estuary reservoir located at the Yangtze River for a year. Correlations between the heterotrophic bacterial and cyanobacterial communities in the estuarine ecosystem were also investigated. Significant spatial and temporal changes were observed in the microbial community composition at all sites. These differences were mainly reflected on the variations of bacterial relative abundance. The modularity analysis on the network indicate that bacterial community response to the variations of environmental factors in the form of co-occurrence/exclusion patterns. In warm season, Synechococcus spp. being the dominant Cyanobacteria taxa exhibited high relative abundance in the reservoir. Water temperature was the critical driver for the proliferation of Synechococcus. Moreover, heterotrophic bacteria belonging to Actinobacteria, Proteobacteria (α-, ß-, and γ-Proteobacteria), Bacteroidetes and Chlorobi, exhibited positive correlations with Synechococcus. The co-occurrence of these bacterial OTUs suggests that specific taxa may benefit from the proliferation of Synechococcus. In cold season, bacterial OTUs belonging to Actinobacteria and Bacteroidetes shown co-occurrence pattern with salt ions (including K+, Na+, Mg2+, Ca2+, Cl- and SO42-) inside the reservoir. In conclusion, further research is required to investigate the ecological functions of these taxa in estuarine ecosystems.


Asunto(s)
Bacterias/crecimiento & desarrollo , Cianobacterias/crecimiento & desarrollo , Ecosistema , Estuarios , Estaciones del Año , Bacterias/clasificación , Bacterias/genética , Cianobacterias/genética , ADN Bacteriano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Ríos/microbiología
9.
Appl Microbiol Biotechnol ; 81(5): 927-41, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18815783

RESUMEN

While cultivation is a convenient way of proliferating and understanding bacteria, studies have shown the formation of nonculturable cells in nonspore-forming bacteria in response to environmental stress and thus in turn have generated immense interest. Whether these cells are in a state of dormancy or in a stage preceding cell death has been considered of paramount importance for the past couple of decades. In this study, osmotic-stress-induced dormant bacterial cells were separated by cell sorting and revived by osmotic down-shift in the absence of nutrients, source(s) that potentially could supply nutrients, and/or the external addition of resuscitation factor(s). Reversal of dormancy followed a definite pattern akin to population asynchrony of dormant cells, and the phenomenon was observed across three species, namely, Enterobacter sp. strain mcp11b, Klebsiella pneumonia strain mcp11d and Escherichia coli. In addition, our study precisely forecasted the presence of multiple subpopulations in dormant cells, which is explained by an emerging theory of survival mechanisms in stressful environments. These observations reveal that the state of dormancy induced by environmental stress in these nonspore-forming bacteria is "reversible" and also implies that it is an orderly and spontaneous adaptation to circumvent adverse conditions.


Asunto(s)
Adaptación Fisiológica , Enterobacter/fisiología , Escherichia coli/fisiología , Klebsiella pneumoniae/fisiología , Presión Osmótica , Recuento de Colonia Microbiana , Enterobacter/efectos de los fármacos , Enterobacter/crecimiento & desarrollo , Enterobacter/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/crecimiento & desarrollo , Klebsiella pneumoniae/metabolismo , Viabilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA