Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biofactors ; 50(3): 572-591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38183321

RESUMEN

Although obesity and subsequent liver injury are increasingly prevalent in women, female mouse models have generally shown resistance to high-fat diet (HFD)-induced obesity. We evaluated control and HFD-fed male and female FVB/N mice, a strain well-suited to transgenic analyses, for phenotypic, histological, and molecular markers related to control of glucose, lipids, and inflammation in serum, liver, and perigonadal white adipose tissues. Unlike many mouse models, HFD-fed FVB/N females gained more perigonadal and mesenteric fat mass and overall body weight than their male counterparts, with increased hepatic expression of lipogenic PPARγ target genes (Cd36, Fsp27, and Fsp27ß), oxidative stress genes and protein (Nqo1 and CYP2E1), inflammatory gene (Mip-2), and the pro-fibrotic gene Pai-1, along with increases in malondialdehyde and serum ALT levels. Further, inherent to females (independently of HFD), hepatic antioxidant heme oxygenase-1 (HMOX1, HO-1) protein levels were reduced compared to their male counterparts. In contrast, males may have been relatively protected from HFD-induced oxidative stress and liver injury by elevated mRNA and protein levels of hepatic antioxidants BHMT and Gpx2, increased fatty acid oxidation genes in liver and adipocytes (Pparδ), despite disorganized and inflamed adipocytes. Thus, female FVB/N mice offer a valuable preclinical, genetically malleable model that recapitulates many of the features of diet-induced obesity and liver damage observed in human females.


Asunto(s)
Dieta Alta en Grasa , Hemo-Oxigenasa 1 , Inflamación , Hígado , Obesidad , Estrés Oxidativo , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Obesidad/metabolismo , Obesidad/patología , Obesidad/genética , Ratones , Masculino , Hígado/metabolismo , Hígado/patología , Inflamación/metabolismo , Inflamación/patología , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , PPAR gamma/metabolismo , PPAR gamma/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/genética , Antígenos CD36/metabolismo , Antígenos CD36/genética , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de la Membrana , Proteínas
2.
Data Brief ; 26: 104464, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31667234

RESUMEN

This data article is related to the research article entitled "Silver nanoparticles alter epithelial basement membrane integrity, cell adhesion molecule expression and TGF-beta secretion", available in the journal Nanomedicine: Nanotechnology, Biology, and Medicine [1]. This Data in Brief consists of data that describe changes in the expression of basement membrane (BM)-associated genes and proteins in three non-transformed epithelial cell lines following acute (6 h) and chronic (24 h plus 7-day chase) exposure to silver nanoparticles (AgNPs). Human BEAS2B (lung), MCF10AI (breast), and CCD-18Co (colon) cultured epithelia were analyzed for protein expression by LC-MS/MS and for gene expression by pathway-focused QRT-PCR arrays of 168 focal adhesion, integrin, and extracellular matrix (ECM) genes known to be localized to the plasma membrane, the BM/ECM, or secreted into the extracellular space. Ingenuity pathway analysis (IPA) of combined gene and protein expression datasets was then used to predict canonical pathways affected by AgNP exposure.

3.
Cancer Immunol Res ; 7(9): 1384-1389, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31481520

RESUMEN

Individuals of African descent are disproportionately affected by specific complex diseases, such as breast and prostate cancer, which are driven by both biological and nonbiological factors. In the case of breast cancer, there is clear evidence that psychosocial factors (environment, socioeconomic status, health behaviors, etc.) have a strong influence on racial disparities. However, even after controlling for these factors, overall phenotypic differences in breast cancer pathology remain among groups of individuals who vary by geographic ancestry. There is a growing appreciation that chronic/reoccurring inflammation, primarily driven by mechanisms of innate immunity, contributes to core functions associated with cancer progression. Germline mutations in innate immune genes that have been retained in the human genome offer enhanced protection against environmental pathogens, and protective innate immune variants against specific pathogens are enriched among populations whose ancestors were heavily exposed to those pathogens. Consequently, it is predicted that racial/ethnic differences in innate immune programs will translate into ethnic differences in both pro- and antitumor immunity, tumor progression, and prognosis, leading to the current phenomenon of racial/ethnic disparities in cancer. This review explores examples of protective innate immune genetic variants that are (i) distributed disproportionately among racial populations and (ii) associated with racial/ethnic disparities of breast and prostate cancer.


Asunto(s)
Neoplasias de la Mama/etnología , Neoplasias de la Mama/inmunología , Disparidades en el Estado de Salud , Neoplasias de la Próstata/etnología , Neoplasias de la Próstata/inmunología , Neoplasias de la Mama/genética , Etnicidad , Femenino , Variación Genética , Humanos , Inmunidad Innata/genética , Inflamación/etnología , Masculino , Neoplasias de la Próstata/genética , Estados Unidos/epidemiología
4.
Nanomedicine ; 21: 102070, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31351238

RESUMEN

Silver nanoparticles (AgNPs) are widely used in consumer and pharmaceutical products due to their antipathogenic properties. However, safety concerns have been raised due to their bioactive properties. While reports have demonstrated AgNPs can embed within the extracellular matrix, their effects on basement membrane (BM) production, integrin engagement, and tissue-integrity are not well-defined. This study analyzed the effects of AgNPs on BM production, composition and integrin/focal adhesion interactions in representative lung, esophageal, breast and colorectal epithelia models. A multidisciplinary approach including focused proteomics, QPCR arrays, pathway analyses, and immune-based, structural and functional assays was used to identify molecular and physiological changes in cell adhesions and the BM induced by acute and chronic AgNP exposure. Dysregulated targets included CD44 and transforming growth factor-beta, two proteins frequently altered during pathogenesis. Results indicate AgNP exposure interferes with BM and cell adhesion dynamics, and provide insight into the mechanisms of AgNP-induced disruption of epithelial physiology.


Asunto(s)
Membrana Basal/metabolismo , Moléculas de Adhesión Celular/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Nanopartículas del Metal/química , Plata , Factor de Crecimiento Transformador beta1/biosíntesis , Línea Celular Tumoral , Humanos , Plata/química , Plata/farmacología
5.
ACS Chem Biol ; 13(10): 2825-2840, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30183254

RESUMEN

The extracellular matrix (ECM) contributes to tumor progression through changes induced by tumor and stromal cell signals that promote increased ECM density and stiffness. The increase in ECM stiffness is known to promote tumor cell invasion into surrounding tissues and metastasis. In addition, this scar-like ECM creates a protective barrier around the tumor that reduces the effectiveness of innate and synthetic antitumor agents. Herein, clinically approved breast cancer therapies as well as novel experimental approaches that target the ECM are discussed, including in situ hydrogel drug delivery systems, an emerging technology the delivers toxic chemotherapeutics, gene-silencing microRNAs, and tumor suppressing immune cells directly inside the tumor. Intratumor delivery of therapeutic agents has the potential to drastically reduce systemic side effects experienced by the patient and increase the efficacy of these agents. This review also describes the opposing effects of ECM degradation on tumor progression, where some studies report improved drug delivery and delayed cancer progression and others report enhanced metastasis and decreased patient survival. Given the recent increase in ECM-targeting drugs entering preclinical and clinical trials, understanding and addressing the factors that impact the effect of the ECM on tumor progression is imperative for the sake of patient safety and survival outcome.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Matriz Extracelular/metabolismo , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Humanos
6.
J Pharmacol Exp Ther ; 354(3): 459-70, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26159875

RESUMEN

Both human and rodent females are more susceptible to developing alcoholic liver disease following chronic ethanol (EtOH) ingestion. However, little is known about the relative effects of acute EtOH exposure on hepatotoxicity in female versus male mice. The nuclear receptor pregnane X receptor (PXR; NR1I2) is a broad-specificity sensor with species-specific responses to toxic agents. To examine the effects of the human PXR on acute EtOH toxicity, the responses of male and female PXR-humanized (hPXR) transgenic mice administered oral binge EtOH (4.5 g/kg) were analyzed. Basal differences were observed between hPXR males and females in which females expressed higher levels of two principal enzymes responsible for EtOH metabolism, alcohol dehydrogenase 1 and aldehyde dehydrogenase 2, and two key mediators of hepatocyte replication and repair, cyclin D1 and proliferating cell nuclear antigen. EtOH ingestion upregulated hepatic estrogen receptor α, cyclin D1, and CYP2E1 in both genders, but differentially altered lipid and EtOH metabolism. Consistent with higher basal levels of EtOH-metabolizing enzymes, blood EtOH was more rapidly cleared in hPXR females. These factors combined to provide greater protection against EtOH-induced liver injury in female hPXR mice, as revealed by markers for liver damage, lipid peroxidation, and endoplasmic reticulum stress. These results indicate that female hPXR mice are less susceptible to acute binge EtOH-induced hepatotoxicity than their male counterparts, due at least in part to the relative suppression of cellular stress and enhanced expression of enzymes involved in both EtOH metabolism and hepatocyte proliferation and repair in hPXR females.


Asunto(s)
Etanol/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Receptores de Esteroides/metabolismo , Alcohol Deshidrogenasa/metabolismo , Consumo de Bebidas Alcohólicas/metabolismo , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa Mitocondrial , Animales , Ciclina D1/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Peroxidación de Lípido/fisiología , Hepatopatías Alcohólicas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor X de Pregnano , Caracteres Sexuales
7.
Front Immunol ; 4: 338, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24194738

RESUMEN

Mounting evidence suggests that imbalances in immune regulation contribute to cell transformation. Women of African descent are an understudied group at high risk for developing aggressive breast cancer (BrCa). Therefore, we examined the role of 16 innate immune single nucleotide polymorphisms (SNPs) in relation to BrCa susceptibility among 174 African-American women in Atlanta, GA, USA. SNPs were examined in germ-line DNA collected from 102 BrCa patients and 72 women with benign nodules using SNPstream methodology. Inheritance of the TLR3 rs10025405 GG genotype was associated with an 82% decrease in BrCa risk. In contrast, individuals who possessed at least one IRAK4 rs4251545 T allele had a 1.68- to 4.99-fold increase in the risk of developing BrCa relative to those with the referent genotype (OR = 4.99; 95% CI = 1.00, 25.00; p = 0.0605). However, the IRAK4 rs4251545 locus was only significant under the additive genetic model (p trend = 0.0406). In silico predictions suggest IRAK4 rs4251545 SNP falls within a transcription enhancer/silencer region of the gene and codes for an Ala428Thr amino acid change. This missense mutation introduces a potential phosphorylation site in the extreme carboxy terminus (XCT) of the IRAK4 kinase domain. Preliminary molecular modeling predicts that this SNP stabilizes two alpha helices within the XCT on the surface of the IRAK4 kinase domain and increases the size of the groove between them. Our in silico results, combined with previous reports noting the presence of IRAK4 and XCT fragments in mouse and human serum, suggest the possibility that the XCT subdomain of IRAK4 possesses biological function. These findings require further evaluation and validation in larger populations, additional molecular modeling as well as functional studies to explore the role of IRAK4 and its XCT in cell transformation and innate immunity.

8.
Artículo en Inglés | MEDLINE | ID: mdl-24648757

RESUMEN

Mounting evidence indicates that anomalies in the inflammatory and immune response pathways are essential to tumorigenesis. However, tumor-based innate immunity initiated by transformed breast epithelia tissues has received much less attention. This review summarizes published reports on the role of the toll-like receptor signaling pathway on breast cancer risk, disease progression, survival, and disease recurrence. Specifically, we discuss the underlying biological mechanisms that contribute to the tumorigenic and/or anti-tumorigenic properties of toll-like receptors and their associated agonists in relation to breast tumorigenesis and cancer treatment. Further, we use results from preclinical, clinical, and population-based studies as prompts for the exploration of new and more effective breast cancer therapies. As the knowledge base of innate immunity's involvement in breast cancer progression increases, current and new immune-modifying strategies will be refined to effectively treat breast cancer.

9.
Curr Chem Genomics ; 4: 74-83, 2010 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-21347208

RESUMEN

Neurite outgrowth assays are the most common phenotypic screen to assess chemical effects on neuronal cells. Current automated assays involve expensive equipment, lengthy sample preparation and handling, costly reagents and slow rates of data acquisition and analysis. We have developed a high throughput screen (HTS) for neurite outgrowth using a robust neuronal cell model coupled to fast and inexpensive visualization methods, reduced data volume and rapid data analysis. Neuroscreen-1 (NS-1) cell, a subclone of PC12, possessing rapid growth and enhanced sensitivity to NGF was used as a model neuron. This method reduces preparation time by using cells expressing GFP or native cells stained with HCS CellMask(™) Red in a multiplexed 30 min fixation and staining step. A 2x2 camera binning process reduced both image data files and analysis times by 75% and 60% respectively, compared to current protocols. In addition, eliminating autofocus steps during montage generation reduced data collection time. Pharmacological profiles for stimulation and inhibition of neurite outgrowth by NGF and SU6656 were comparable to current standard method utilizing immunofluorescence detection of tubulin. Potentiation of NGF-induced neurite outgrowth by members of a 1,120-member Prestwick compound library as assayed using this method identified six molecules, including etoposide, isoflupredone acetate, fludrocortisone acetate, thioguanosine, oxyphenbutazone and gibberellic acid, that more than doubled the neurite mass primed by 2 ng/ml NGF. This simple procedure represents an important routine approach in high throughput screening of large chemical libraries using the neurite outgrowth phenotype as a measure of the effects of chemical molecules on neuronal cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...