Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2312254, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38521992

RESUMEN

A new method is reported to make air-stable n-type organic mixed ionic-electronic conductor (OMIEC) films for organic electrochemical transistors (OECTs) using a solution-processable small molecule helical perylene diimide trimer, hPDI[3]-C11. Alkyl side chains are attached to the conjugated core for processability and film making, which are then cleaved via thermal annealing. After the sidechains are removed, the hPDI[3] film becomes less hydrophobic, more ordered, and has a deeper lowest unoccupied molecular orbital (LUMO). These features provide improved ionic transport, greater electronic mobility, and increased stability in air and in aqueous solution. Subsequently, hPDI[3]-H is used as the active material in OECTs and a device with a transconductance of 44 mS, volumetric capacitance of ≈250 F cm-3, µC* value of 1 F cm-1 V-1 s-1, and excellent stability (> 5 weeks) is demonstrated. As proof of their practical applications, a hPDI[3]-H-based OECTs as a glucose sensor and electrochemical inverter is utilized. The approach of side chain removal after film formation charts a path to a wide range of molecular semiconductors to be used as stable, mixed ionic-electronic conductors.

2.
Adv Mater ; 36(9): e2310478, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38054854

RESUMEN

White-light detection from the visible to the near-infrared region is central to many applications such as high-speed cameras, autonomous vehicles, and wearable electronics. While organic photodetectors (OPDs) are being developed for such applications, several challenges must be overcome to produce scalable high-detectivity OPDs. This includes issues associated with low responsivity, narrow absorption range, and environmentally friendly device fabrication. Here, an OPD system processed from 2-methyltetrahydrofuran (2-MeTHF) sets a record in light detectivity, which is also comparable with commercially available silicon-based photodiodes is reported. The newly designed OPD is employed in wearable devices to monitor heart rate and blood oxygen saturation using a flexible OPD-based finger pulse oximeter. In achieving this, a framework for a detailed understanding of the structure-processing-property relationship in these OPDs is also developed. The bulk heterojunction (BHJ) thin films processed from 2-MeTHF are characterized at different length scales with advanced techniques. The BHJ morphology exhibits optimal intermixing and phase separation of donor and acceptor moieties, which facilitates the charge generation and collection process. Benefitting from high charge carrier mobilities and a low shunt leakage current, the newly developed OPD exhibits a specific detectivity of above 1012  Jones over 400-900 nm, which is higher than those of reference devices processed from chlorobenzene and ortho-xylene.

3.
Mater Horiz ; 10(12): 5564-5576, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37872787

RESUMEN

We report on the use of molecular acceptors (MAs) and donor polymers processed with a biomass-derived solvent (2-methyltetrahydrofuran, 2-MeTHF) to facilitate bulk heterojunction (BHJ) organic photovoltaics (OPVs) with power conversion efficiency (PCE) approaching 15%. Our approach makes use of two newly designed donor polymers with an opened ring unit in their structures along with three molecular acceptors (MAs) where the backbone and sidechain were engineered to enhance the processability of BHJ OPVs using 2-MeTHF, as evaluated by an analysis of donor-acceptor (D-A) miscibility and interaction parameters. To understand the differences in the PCE values that ranged from 9-15% as a function of composition, the surface, bulk, and interfacial BHJ morphologies were characterized at different length scales using atomic force microscopy, grazing-incidence wide-angle X-ray scattering, resonant soft X-ray scattering, X-ray photoelectron spectroscopy, and 2D solid-state nuclear magnetic resonance spectroscopy. Our results indicate that the favorable D-A intermixing that occurs in the best performing BHJ film with an average domain size of ∼25 nm, high domain purity, uniform distribution and enhanced local packing interactions - facilitates charge generation and extraction while limiting the trap-assisted recombination process in the device, leading to high effective mobility and good performance.

4.
ACS Appl Mater Interfaces ; 15(31): 37748-37755, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37505202

RESUMEN

Solution-processed organic photodetectors with broadband activity have been demonstrated with an environmentally benign solvent, ortho-xylene (o-xylene), as the processing solvent. The organic photodetectors employ a wide band gap polymer donor PBDB-T and a narrow band gap small-molecule non-fullerene acceptor CO1-4F, both dissolvable in o-xylene at a controlled temperature. The o-xylene-processed devices have shown external quantum efficiency of up to 70%, surpassing the counterpart processed with chlorobenzene. With a well-suppressed dark current, the device can also present a high specific detectivity of over 1012 Jones at -2 V within practical operation frequencies and is applicable for photoplethysmography with its fast response. These results further highlight the potential of green-solvent-processed organic photodetectors as a high-performing alternative to their counterparts processed in toxic chlorinated solvents without compromising the excellent photosensing performance.

5.
Adv Mater ; 34(31): e2203796, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35703912

RESUMEN

The charge generation-recombination dynamics in three narrow-bandgap near-IR absorbing nonfullerene (NFA) based organic photovoltaic (OPV) systems with varied donor concentrations of 40%, 30%, and 20% are investigated. The dilution of the polymer donor with visible-range absorption leads to highly transparent active layers with blend average visible transmittance (AVT) values of 64%, 70%, and 77%, respectively. Opaque devices in the optimized highly reproducible device configuration comprising these transparent active layers lead to photoconversion efficiencies (PCEs) of 7.0%, 6.5%, and 4.1%. The investigation of these structures yields quantitative insights into changes in the charge generation, non-geminate charge recombination, and extraction dynamics upon dilution of the donor. Lastly, this study gives an outlook for employing the highly transparent active layers in semitransparent organic photovoltaics (ST-OPVs).

6.
ACS Appl Mater Interfaces ; 14(10): 12469-12478, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35230814

RESUMEN

A wet processing method to fabricate high-performance organic electrochemical transistors (OECTs) is reported. Wet chemical processing enables a simple and reliable patterning step, substituting several complex and expensive cleanroom procedures in the fabrication of OECTs. We fabricate depletion-mode OECTs based on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and enhancement-mode OECTs based on a conjugated polyelectrolyte PCPDTBT-SO3K on rigid and flexible substrates using this wet processing method. We show that the wet chemical processing step can also serve as a chemical treatment to enhance the electrical properties of the active material in OECTs. To highlight the potential of the fabrication process in applications, a transistor-based chemical sensor is demonstrated, capable of detecting methylene blue, a popular redox reporter in biodetection and immunoassays, with good detectivity. Given the tremendous potential of OECTs in emerging technologies such as biosensing and neuromorphic computing, this simple fabrication process established herein will render the OECT platform more accessible for research and applications.

7.
Adv Mater ; 34(6): e2105943, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34818688

RESUMEN

Fused-ring core nonfullerene acceptors (NFAs), designated "Y-series," have enabled high-performance organic solar cells (OSCs) achieving over 18% power conversion efficiency (PCE). Since the introduction of these NFAs, much effort has been expended to understand the reasons for their exceptional performance. While several studies have identified key optoelectronic properties that govern high PCEs, little is known about the molecular level origins of large variations in performance, spanning from 5% to 18% PCE, for example, in the case of PM6:Y6 OSCs. Here, a combined solid-state NMR, crystallography, and molecular modeling approach to elucidate the atomic-scale interactions in Y6 crystals, thin films, and PM6:Y6 bulk heterojunction (BHJ) blends is introduced. It is shown that the Y6 morphologies in BHJ blends are not governed by the morphology in neat films or single crystals. Notably, PM6:Y6 blends processed from different solvents self-assemble into different structures and morphologies, whereby the relative orientations of the sidechains and end groups of the Y6 molecules to their fused-ring cores play a crucial role in determining the resulting morphology and overall performance of the solar cells. The molecular-level understanding of BHJs enabled by this approach will guide the engineering of next-generation NFAs for stable and efficient OSCs.

8.
ACS Appl Mater Interfaces ; 13(50): 60288-60298, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34889097

RESUMEN

Recently, with the development of figure-of-merit non-fullerene acceptor materials combined with a ternary strategy and layer-by-layer (LbL) processing, the efficiency of single-junction organic solar cells has exceeded 18%. However, the structural properties of LbL-processed films have not been sufficiently elucidated. Herein, we systematically investigate films fabricated via LbL processing of three different systems, including a ternary system. In particular, we focus on the structural and morphological transitions associated with the diffusion process controlled by thermal annealing and an additive solvent. Different diffusion and crystal formation mechanisms were clearly identified, which were observed to be dependent on the characteristics of the upper layer formed during the LbL process. Based on this insight, the photovoltaic properties associated with various LbL conditions are elucidated, and an ideal path toward a better device is suggested.

9.
ACS Omega ; 4(22): 19705-19709, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31788601

RESUMEN

The 1,8-naphthalimide (NI) derivative Lumogen F Violet 570 exhibits different photoluminescence (PL) and aggregation-caused quenching properties due to its crystal polymorphism, which depends on the solvent evaporation process in tetrahydrofuran solution. In the slow drying process, molecules aggregated into an energetically more stable form (time-dependent density functional theory calculation), of which the PL peak maximum was 453 nm, corresponding to blue emission at the 365 nm excitation. However, the fast evaporation process induces an energetically less stable form, with a PL peak maximum of 508 nm, corresponding to green emission. The main difference between the two crystal structures is the alkyl conformation, as confirmed by X-ray single-crystal analysis. Due to the different alkyl conformations, NI groups aggregated into more obliquely aligned structures that emit blue PL, which plays a role in weakening the π-π interactions between molecules relative to green PL crystals. We found that the conformational stable molecular stacking induced instability in the electronic energy levels of the blue crystal compared to the green crystal.

10.
Nanoscale ; 10(45): 21052-21061, 2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30215661

RESUMEN

Recently, the sequential (Sq) process, which forms nanoscale network structures from quasi-solid-state inter-diffusion through swelling and annealing, is considered to be one of the most efficient methods for fabricating organic solar cells and blend films. Here, we examined the effect of the crystallinity and orientation of poly(3-hexylthiophene) (P3HT) molecules on the formation of the nanostructure by carrying out a Sq process using various solvents with different boiling points. We showed that the moderate crystallinity promoted suitable inter-diffusion between the donor (P3HT) and acceptor ([6,6]-pentadeuterophenyl C61 butyric acid methyl ester, PC60BM), and hence was important for achieving high-performance solar cells using Sq processing. Nanostructure formation by inter-diffusion was investigated and visualized by taking a combination of grazing-incidence wide-angle X-ray scattering (GIWAXS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements. In addition, our Sq-processed solar cell yielded a device efficiency as high as 3.25%, and was also impressive because it was made with an eco-friendly solvent and using a short-duration annealing process, in contrast to the conventional BHJ process. The present findings provided advanced insight into the Sq process, and we anticipate this efficacious sequential process to contribute not only to the development of higher-efficiency organic solar cells but also to the fabrication of functional blend films.

11.
ACS Appl Mater Interfaces ; 9(29): 24422-24427, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28691483

RESUMEN

We report femtosecond infrared laser-induced selective tailoring of carrier transport as well as surface morphology on a conducting polymer blend thin film. Maximal 2.4 times enhancement on vertical current transport in poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester, was achieved by this irradiation. The laser irradiation induced a photo expansion without deteriorating its molecular structure and the film morphology could be customized in the micron scale by adjusting the laser writing parameters. In the photoexpanded region, the face-on populations were about 2.2 times larger in comparison with the pristine region, which was a major contributor to the enhanced carrier transport.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...