Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 12(1): 3, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407888

RESUMEN

BACKGROUND: Although pancreatic islet transplantation therapy is ideal for diabetes patients, several hurdles have prevented it from becoming a standard treatment, including donor shortage and low engraftment efficacy. In this study, we prepared insulin-producing cells trans-differentiated from adult human liver cells as a new islet source. Also, cell sheet formation could improve differentiation efficiency and graft survival. METHODS: Liver cells were expanded in vitro and trans-differentiated to IPCs using adenovirus vectors carrying human genes for PDX1, NEUROD1, and MAFA. IPCs were seeded on temperature-responsive culture dishes to form cell sheets. Differentiation efficiency was confirmed by ß cell-specific gene expression, insulin production, and immunohistochemistry. IPC suspension was injected by portal vein (PV), and IPC sheet was transplanted on the liver surface of the diabetic nude mouse. The therapeutic effect of IPC sheet was evaluated by comparing blood glucose control, weight gain, histological evaluation, and hepatotoxicity with IPC injection group. Also, cell biodistribution was assessed by in vivo/ex vivo fluorescence image tagging. RESULTS: Insulin gene expression and protein production were significantly increased on IPC sheets compared with those in IPCs cultured on conventional culture dishes. Transplanted IPC sheets displayed significantly higher engraftment efficiency and fewer transplanted cells in other organs than injected IPCs, and also lower liver toxicity, improved blood glucose levels, and weight gain. Immunohistochemical analyses of liver tissue revealed positive staining for PDX1 and insulin at 1, 2, and 4 weeks after IPC transplantation. CONCLUSIONS: In conclusion, cell sheet formation enhanced the differentiation function and maturation of IPCs in vitro. Additionally, parameters for clinical application such as distribution, therapeutic efficacy, and toxicity were favorable. The cell sheet technique may be used with IPCs derived from various cell sources in clinical applications.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Adulto , Animales , Diferenciación Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Hígado/metabolismo , Distribución Tisular
2.
Cells ; 9(12)2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261076

RESUMEN

Pancreatic islet transplantation is the fundamental treatment for insulin-dependent diabetes; however, donor shortage is a major hurdle in its use as a standard treatment. Accordingly, differentiated insulin-producing cells (DIPCs) are being developed as a new islet source. Differentiation efficiency could be enhanced if the spheroid structure of the natural islets could be recapitulated. Here, we fabricated DIPC spheroids using concave microwells, which enabled large-scale production of spheroids of the desired size. We prepared DIPCs from human liver cells by trans-differentiation using transcription factor gene transduction. Islet-related gene expression and insulin secretion levels were higher in spheroids compared to those in single-cell DIPCs, whereas actin-myosin interactions significantly decreased. We verified actin-myosin-dependent insulin expression in single-cell DIPCs by using actin-myosin interaction inhibitors. Upon transplanting cells into the kidney capsule of diabetic mouse, blood glucose levels decreased to 200 mg/dL in spheroid-transplanted mice but not in single cell-transplanted mice. Spheroid-transplanted mice showed high engraftment efficiency in in vivo fluorescence imaging. These results demonstrated that spheroids fabricated using concave microwells enhanced the engraftment and functions of DIPCs via actin-myosin-mediated cytoskeletal changes. Our strategy potentially extends the clinical application of DIPCs for improved differentiation, glycemic control, and transplantation efficiency of islets.


Asunto(s)
Diferenciación Celular/fisiología , Citoesqueleto/fisiología , Células Secretoras de Insulina/fisiología , Insulina/metabolismo , Esferoides Celulares/fisiología , Actinas/metabolismo , Animales , Células Cultivadas , Citoesqueleto/metabolismo , Humanos , Secreción de Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Hígado/metabolismo , Hígado/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Miosinas/metabolismo , Esferoides Celulares/metabolismo
3.
Cells ; 9(9)2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878048

RESUMEN

Islet cell transplantation is considered an ideal treatment for insulin-deficient diabetes, but implantation sites are limited and show low graft survival. Cell sheet technology and adipose-derived stem cells (ADSCs) can be useful tools for improving islet cell transplantation outcomes since both can increase implantation efficacy and graft survival. Herein, the optimal transplantation site in diabetic mice was investigated using islets and stem cell sheets. We constructed multi-layered cell sheets using rat/human islets and human ADSCs. Cell sheets were fabricated using temperature-responsive culture dishes. Islet/ADSC sheet (AI sheet) group showed higher viability and glucose-stimulated insulin secretion than islet-only group. Compared to islet transplantation alone, subcutaneous AI sheet transplantation showed better blood glucose control and CD31+ vascular traits. Because of the adhesive properties of cell sheets, AI sheets were easily applied on liver and peritoneal surfaces. Liver or peritoneal surface grafts showed better glucose control, weight gain, and intraperitoneal glucose tolerance test (IPGTT) profiles than subcutaneous site grafts using both rat and human islets. Stem cell sheets increased the therapeutic efficacy of islets in vivo because mesenchymal stem cells enhance islet function and induce neovascularization around transplanted islets. The liver and peritoneal surface can be used more effectively than the subcutaneous site in future clinical applications.


Asunto(s)
Tejido Adiposo/metabolismo , Diabetes Mellitus Experimental/terapia , Islotes Pancreáticos/metabolismo , Trasplante de Células Madre/métodos , Células Madre/metabolismo , Animales , Masculino , Ratones , Ratas , Ratas Sprague-Dawley
4.
Foodborne Pathog Dis ; 17(3): 209-214, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31692375

RESUMEN

Vibrio parahaemolyticus is a marine bacterium that causes foodborne diarrhea. Many seafood restaurants keep live fish and shellfish in fish tanks for use in raw seafood dishes; thus, the present study aimed to investigate the prevalence, antibiotic-resistance, and virulence characteristics exhibited by V. parahaemolyticus detected in restaurant fish-tank water samples collected in Seoul, South Korea. Fish-tank water samples were collected from 69 restaurants in Seoul, and screened for the presence of V. parahaemolyticus via both a commercial detection kit, and a real-time polymerase chain reaction (RT-PCR) to detect the toxR gene. Antibiotic susceptibility and virulence determinants of V. parahaemolyticus isolates were evaluated and identified using standard disk-diffusion and RT-PCR methods, respectively. Thirty-five (50.7%) of the 69 analyzed water samples were found to be contaminated with V. parahaemolyticus. Those isolates were most often resistant to ampicillin (51.4% of isolates), followed by amikacin and tetracycline (11.4%), and ceftazidime (8.6%). Thirty (85.7%) out of the 35 isolates carried all four cytotoxicity-inducing type III secretion system 1 (T3SS1) genes [specifically, 34 (97.1%), 33 (94.3%), 35 (100%), and 32 (91.4%) isolates carried genes encoding the VP1670, VP1686, VP1689, and VP1694 T3SS1 proteins, respectively]. The type VI secretion systems (T6SS1 and T6SS2) genes were also detected in 11 (31.4%) and 27 (77.1%) isolates, respectively. However, virulence determinants such as the hemolysin (tdh and trh), urease (ureC), T3SS2α, or T3SS2ß genes that are known to be associated with enterotoxicity were not detected in all isolates. Although some known major virulence genes were not detected in the V. parahaemolyticus isolates, the results of this study indicate that restaurant fish tanks are a potential source of antibiotic-resistant V. parahaemolyticus. The presented data support the need for strict guidelines to regulate the maintenance of restaurant fish tanks to prevent antibiotic-resistant foodborne vibriosis.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Agua de Mar/microbiología , Vibrio parahaemolyticus/efectos de los fármacos , Factores de Virulencia/genética , Proteínas Bacterianas/genética , ADN Bacteriano , Proteínas de Unión al ADN/genética , Contaminación de Alimentos , Prevalencia , Reacción en Cadena en Tiempo Real de la Polimerasa , Restaurantes , Alimentos Marinos/microbiología , Seúl , Factores de Transcripción/genética , Vibrio parahaemolyticus/clasificación , Vibrio parahaemolyticus/aislamiento & purificación , Virulencia
6.
Sci Rep ; 8(1): 360, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321630

RESUMEN

Post-operative pancreatic fistula (POPF) following pancreatic resection is a life-threatening surgical complication. Cell sheets were prepared and harvested using temperature-responsive culture dishes and transplanted as patches to seal POPF. Two different mesenchymal stem cell (MSC) sheets were compared in terms of the preventative ability for pancreatic leakage in a rat model. Both rat adipose-derived stem cell (rADSC) and bone marrow-derived stem cell (rBMSC) sheets were transplanted. Those rADSC and rBMSC sheets are created without enzymes and thus maintained their cell-cell junctions and adhesion proteins with intact fibronectin on the basal side, as well as characteristics of MSCs. The rats with post-pancreatectomy rADSC- or rBMSC-sheet patches had significantly decreased abdominal fluid leakage compared with the control group, demonstrated by MR image analysis and measurement of the volume of abdominal fluid. Amylase level was significantly lower in the rats with rADSC-sheet and rBMSC-sheet patches compared with the control groups. The rADSC sheet patches had increased adhesive and immune-cytokine profiles (ICAM-1, L-selectin, TIMP-1), and the rBMSC sheets had reduced immune reactions compared to the control. This is first project looking at the feasibility of tissue engineering therapy using MSC-sheets as tissue patches preventing leakage of abdominal fluid caused by POPF.


Asunto(s)
Células Madre Mesenquimatosas , Fístula Pancreática/etiología , Fístula Pancreática/terapia , Complicaciones Posoperatorias , Ingeniería de Tejidos , Amilasas/metabolismo , Animales , Biomarcadores , Modelos Animales de Enfermedad , Inmunohistoquímica , Imagen por Resonancia Magnética , Células Madre Mesenquimatosas/citología , Fístula Pancreática/diagnóstico por imagen , Fístula Pancreática/patología , Ratas , Ratas Transgénicas , Resultado del Tratamiento
7.
Oncotarget ; 8(25): 40140-40151, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28498800

RESUMEN

To obtain improved efficacy against pancreatic cancer, we investigated the efficacy and safety of a locally-applied 5-fluorouracil (5-FU)-loaded polymeric patch on pancreatic tumors in an orthotopic nude-mouse model. The 5-FU-releasing polymeric patch was produced by 3D printing. After application of the patch, it released the drug slowly for 4 weeks, and suppressed BxPC-3 pancreas cancer growth. Luciferase imaging of BxPC3-Luc cells implanted in the pancreas was performed longitudinally. The drug patch delivered a 30.2 times higher level of 5-FU than an intra-peritoneal (i.p.) bolus injection on day-1. High 5-FU levels were accumulated within one week by the patch. Four groups were compared for efficacy of 5-FU. Drug-free patch as a negative control (Group I); 30% 5-FU-loaded patch (4.8 mg) (Group II); 5-FU i.p. once (4.8 mg) (Group III); 5-FU i.p. once a week (1.2 mg), three times (Group IV). The tumor growth rate was significantly faster in Group I than Group II, III, IV (p=0.047 at day-8, p=0.022 at day-12, p=0.002 at day-18 and p=0.034 at day-21). All mice in Group III died of drug toxicity within two weeks after injection. Group II showed more effective suppression of tumor growth than Group IV (p=0.018 at day-12 and p=0.017 at day-21). Histological analysis showed extensive apoptosis in the TUNEL assay and by Ki -67 staining. Western blotting confirmed strong expression of cleaved caspase-3 in Group II. No significant changes were found hematologically and histologically in the liver, kidney and spleen in Groups I, II, IV but were found in Group III.


Asunto(s)
Fluorouracilo/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/farmacología , Línea Celular Tumoral , Liberación de Fármacos , Fluorouracilo/administración & dosificación , Fluorouracilo/farmacocinética , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Análisis de Supervivencia , Factores de Tiempo , Parche Transdérmico , Resultado del Tratamiento
8.
Oncotarget ; 7(26): 39796-39808, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27174920

RESUMEN

We previously reported that BIX-01294 (BIX), a small molecular inhibitor of euchromatic histone-lysine N-methyltransferase 2 (EHMT2/G9a), induces reactive oxygen species (ROS)-dependent autophagy in MCF-7 cells. Herein, we analyzed the epigenetic mechanism that regulates the transcription of Beclin-1, a tumor suppressor and an autophagy-related gene (ATG). Inhibition of EHMT2 reduced dimethylation of lysine 9 on histone H3 (H3K9me2) and dissociated EHMT2 and H3K9me2 from the promoter of Beclin-1. To this promoter, RNA polymerase II and nuclear factor kappa B (NF-κB) were recruited in a ROS-dependent manner, resulting in transcriptional activation. Moreover, treatment with BIX reversed the suppression of Beclin-1 by the cooperative action of EHMT2 and DNA methyltransferase 1 (DNMT1). Accordingly, a combination treatment with BIX and 5-Aza-2'-deoxycytidine (5-Aza-Cd), a DNMT1 inhibitor, exerted a synergistic effect on Beclin-1 expression. Importantly, high levels of EHMT2 expression showed a significant association with low levels of Beclin-1 expression, which was related to a poor prognosis. These findings suggest that EHMT2 can directly repress Beclin-1 and that the inhibition of EHMT2 may be a useful therapeutic approach for cancer prevention by activating autophagy.


Asunto(s)
Beclina-1/genética , Neoplasias de la Mama/metabolismo , Epigénesis Genética , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Azepinas/química , Femenino , Humanos , Células MCF-7 , Proteínas Asociadas a Microtúbulos/metabolismo , Pronóstico , Regiones Promotoras Genéticas , Quinazolinas/química , Interferencia de ARN , Transcripción Genética
9.
Prostate ; 75(15): 1747-59, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26250606

RESUMEN

BACKGROUND: PTEN deletion, mutation or reduced expression occurs in 63% of metastatic prostate tumors, resulting in the activation of PI3K and its downstream targets, AKT and mTOR. Inhibition of the PI3K pathway results in upregulation of the MAPK pathway. Therefore, co-administration of inhibitors of both pathways, GSK2126458 as a dual PI3K/mTOR inhibitor, and AZD6244 as a MEK inhibitor, is able to overcome resistance and increase anti-tumor efficacy. METHODS: PC3, DU145, LNCaP, and CRPC patient-derived cells were used to assess apoptosis upon exposure to the drug combination. The human DU145 and PC3 tumor xenograft mouse model was employed to evaluate in vivo efficacy. CellTiter Glo® luminescent assay, annexin V-FITC apoptosis detection, cell cycle analysis, Western blotting and immunohistochemistry were conducted. Statistical evaluation of the results was performed by one-way ANOVA. RESULTS: The combination of GSK2126458 and AZD6244 inhibited the growth of DU145 and PC3 prostate cancer cells in vitro and in vivo. GSK2126458 decreased phospho-AKT while increasing phospho-ERK and AZD6244 decreased phospho-ERK efficiently while increasing phospho-AKT. The combination of GSK2126458 and AZD6244 decreased both phospho-AKT and phospho-ERK effectively in vitro and in vivo. The combination treatment synergistically induced annexin V-positive cells, sub-G1 cells, and cleavage of caspase-9, caspase-3 and poly-ADP ribose polymerase (PARP) in DU145 cells in vitro. Moreover, the combination decreased the level of Ki-67, and increased TUNEL-positive cells and cleaved caspase-3 in DU145 xenograft tumors implanted in mice. In addition, this combination treatment inhibited both the PI3K and MEK pathway primary in cultures from CRPC patients harboring PTEN loss, leading to synergistic anti-tumor effect. CONCLUSIONS: The combination of GSK2126458 and AZD6244 blocks both the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways simultaneously and is an effective strategy for the treatment of CRPCs.


Asunto(s)
Apoptosis/efectos de los fármacos , Bencimidazoles/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Sulfonamidas/farmacología , Animales , Bencimidazoles/uso terapéutico , Caspasa 3/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Masculino , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridazinas , Quinolinas/uso terapéutico , Sulfonamidas/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
10.
J Urol ; 193(5): 1660-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25433307

RESUMEN

PURPOSE: Despite several therapeutic options renal cell carcinoma is associated with a poor clinical outcome. Therefore, we investigated whether combining 5-fluorouracil with the histone deacetylase inhibitor belinostat would exert a synergistic effect on renal cell carcinoma cells in vitro and in vivo. MATERIALS AND METHODS: We used SN12C cells treated with 5-fluorouracil and/or belinostat in vitro and in xenograft experiments in vivo. Cell viability and death mechanisms were assessed by MTS assay and Western blot. To investigate the role of reactive oxygen species we used H2DCF-DA, reactive oxygen species scavengers and the roGFP2 construct. RESULTS: Belinostat potentiated the anticancer effect of 5-fluorouracil. It synergistically induced apoptosis by activating caspases and increasing the subG1 cell population. Effects on reactive oxygen species mediated DNA damage included decreased thioredoxin expression and increased levels of TBP-2, γ-H2AX and Ac-H3. Furthermore, belinostat attenuated the 5-fluorouracil mediated induction of thymidylate synthase via HSP90 hyperacetylation. Co-administration of 5-fluorouracil with belinostat similarly reduced tumor volume and weight, and increased γ-H2AX and Ac-H3 levels in the SN12C xenograft model. CONCLUSIONS: In combination with 5-fluorouracil the targeted inhibitor of histone deacetylase synergistically inhibited renal cancer cell growth by the blockade of thymidylate synthase induction and the induction of reactive oxygen species mediated DNA damage in vitro and in vivo. Our results suggest that combined treatment with belinostat and 5-fluorouracil may represent a promising new approach to renal cancer.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Daño del ADN/efectos de los fármacos , Fluorouracilo/administración & dosificación , Proteínas HSP90 de Choque Térmico/efectos de los fármacos , Inhibidores de Histona Desacetilasas/administración & dosificación , Ácidos Hidroxámicos/administración & dosificación , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sulfonamidas/administración & dosificación , Timidilato Sintasa/efectos de los fármacos , Animales , Quimioterapia Combinada , Humanos , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico Sintasa , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...