Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(4): 2031-2042, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38593209

RESUMEN

Surface-enhanced Raman scattering (SERS) technology, as an important analytical tool, has been widely applied in the field of chemical and biomedical sensing. Automated testing is often combined with biochemical analysis technologies to shorten the detection time and minimize human error. The present SERS substrates for sample detection are time-consuming and subject to high human error, which are not conducive to the combination of SERS and automated testing. Here, a novel honeycomb-inspired SERS microarray is designed for large-area automated testing of urease in saliva samples to shorten the detection time and minimize human error. The honeycomb-inspired SERS microarray is decorated with hexagonal microwells and a homogeneous distribution of silver nanostars. Compared with the other four common SERS substrates, the optimal honeycomb-inspired SERS microarray exhibits the best SERS performance. The RSD of 100 SERS spectra continuously collected from saliva samples is 6.56%, and the time of one detection is reduced from 5 min to 10 s. There is a noteworthy linear relationship with a R2 of 0.982 between SERS intensity and urease concentration, indicating the quantitative detection capability of the urease activity in saliva samples. The honeycomb-inspired SERS microarray, combined with automated testing, provides a new way in which SERS technology can be widely used in biomedical applications.


Asunto(s)
Saliva , Plata , Espectrometría Raman , Ureasa , Ureasa/química , Saliva/química , Saliva/enzimología , Espectrometría Raman/métodos , Humanos , Plata/química , Nanopartículas del Metal/química , Análisis por Micromatrices
2.
Biosens Bioelectron ; 189: 113266, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34052581

RESUMEN

Drug detection in biofluids has always been great importance for clinical diagnosis. Many detection technologies such as chromatography-mass spectrometry, have been applied to the detection of drugs. However, these technologies required multi-step operations, including complicated and time-consuming pretreatment processes and operations of bulky detection instruments, significantly limiting development of drug detection in clinical diagnosis. Herein, a portable 3D-printed paper cartridge was fabricated for fast sample preconcentration and direct drugs quantitative detection in biofluids by a portable Raman spectrometer. This cartridge contained both paper tip with silver nanowires to preconcentrate samples and achieve surface-enhanced Raman Scattering (SERS) measurement, and 3D-printed cartridge to build enclosed environment for the improvement of detection, which cost only one dollar. The preconcentration ability of the cartridge was up to 18.13-fold fluorescence enhancement and compared to the non-preconcentration method, it achieved 9.93-fold improvement of SERS performance. The anticancer drug of epirubicin hydrochloride, cyclophosphamide and their mixtures were quantitatively detected in the bovine serum or artificial urine. The integrated detection procedure required only 1 h, including sample pretreatment and preconcentration, drying, SERS measurements, and quantification analysis. This 3D-printed paper cartridge constituted a portable detection platform that would be potentially a practical and point-of-care detection tool for drug preconcentration and quantification on the clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Preparaciones Farmacéuticas , Animales , Bovinos , Impresión Tridimensional , Plata , Espectrometría Raman
3.
Lab Chip ; 20(5): 931-941, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32022068

RESUMEN

The recent boom of nanomaterials printing in the fields of biomedical engineering, bioanalysis and flexible electronics has greatly stimulated researchers' interest in printing technologies. However, specifically formulated nanomaterial inks have limited the types of printable nanomaterials. Here, a unique non-powered capillary force-driven stamped (CFDS) approach, combining a 3D-printed stamper with a paper substrate, is developed for directly printing patterned nanomaterials aqueous solution. The CFDS approach has two processes, including the loading process in which the capillary force of the stamper channel is stronger than gravity, and the deposition process, in which the synergistic action of the capillary force of the paper fibre tubes and gravity is approximately 20 times the capillary force of the stamper channel. Four additive-free nanomaterial aqueous solutions, including nanowires, nanosheets, nanostars and nanogels, are used to print patterns, and show slight diffusion and desired uniformity with a diffusion rate and roundness of 1.12 and 0.78, respectively, demonstrating the feasibility of this approach. Four kinds of nanogel with different fluorescence labels are simultaneously printed to challenge the approach and demonstrate its flexibility and scalability. The resolution of the approach is 0.3 mm. Without any post-processing, the stamped paper substrates directly serve as paper-based surface enhanced Raman scattering substrates with an enhancement factor of 4 × 106 and as electrodes with a resistance of 0.74 Ω, demonstrating their multi-functionality. Due to its general, flexible and scalable applicability, this simple, low-cost and non-powered approach could be widely applied to the personalized printing of nanomaterials on paper substrates.

4.
Micromachines (Basel) ; 9(7)2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-30424260

RESUMEN

Three-dimensional (3D) printing will create a revolution in the field of microfluidics due to fabricating truly three-dimensional channels in a single step. During the 3D-printing process, sacrificial materials are usually needed to fulfill channels inside and support the printed chip outside. Removing sacrificial materials after printing is obviously crucial for applying these 3D printed chips to microfluidics. However, there are few standard methods to address this issue. In this paper, engineering techniques of removing outer and inner sacrificial materials were studied. Meanwhile, quantification methods of removal efficiency for outer and inner sacrificial materials were proposed, respectively. For outer sacrificial materials, a hot bath in vegetable oil can remove 89.9% ± 0.1% of sacrificial materials, which is better than mechanics removal, hot oven heating, and an ethanol bath. For inner sacrificial materials, injecting 70 °C vegetable oil for 720 min is an optimized approach because of the uniformly high transmittance (93.8% ± 6.8%) and no obvious deformation. For the industrialization of microfluidics, the cost-effective removing time is around 10 min, which considers the balance between time cost and chip transmittance. The optimized approach and quantification methods presented in this paper show general engineering sacrificial materials removal techniques, which promote removing sacrificial materials from 3D-printed microfluidics chips and take 3D printing a step further in microfluidic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...