Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 13(12): e2303342, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38291883

RESUMEN

The development of hydrogel adhesives with high mechanical resilience and toughness remains a challenging task. Hydrogels must exhibit high mechanical resilience to withstand the inevitable movement of the human body while simultaneously demonstrating strong wet tissue adhesion and appropriate toughness to hold and seal damaged tissues; However, tissue adhesion, toughness, and mechanical resilience are typically negatively correlated. Therefore, this paper proposes a highly resilient double-network (DN) hydrogel wound-sealing patch that exhibits a well-balanced combination of tissue adhesion, toughness, and mechanical resilience. The DN structure is formed by introducing covalently and non-covalently crosslinkable dopamine-modified crosslinkers and physically interactable linear poly(vinyl imidazole) (PVI). The resulting hydrogel adhesive exhibits high toughness and mechanical resilience due to the presence of a DN involving reversible physical intermolecular interactions such as hydrogen bonds, hydrophobic associations, cation-π interactions, π-π interactions, and chain entanglements. Moreover, the hydrogel adhesive achieves strong wet tissue adhesion through the polar hydroxyl groups of dopamine and the amine group of PVI. These mechanical attributes allow the proposed adhesive to effectively seal damaged tissues and promote wound healing by maintaining a moist environment.


Asunto(s)
Hidrogeles , Hidrogeles/química , Cicatrización de Heridas/efectos de los fármacos , Adhesivos/química , Animales , Adhesivos Tisulares/química , Humanos , Dopamina/química
2.
ACS Appl Mater Interfaces ; 14(32): 36304-36314, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35917444

RESUMEN

Hydrogels are promising material for wound dressing and tissue engineering. However, owing to their low tissue adhesion in a moist environment and lack of flexibility, hydrogels are still not widely applied in movable parts, such as joints. Herein, we report a dual-crosslinked hydrogel adhesive using a dopamine-modified and acrylate-terminated crosslinker, tri(ethylene glycol) diacrylate-dopamine crosslinker (TDC). The covalent crosslinking was formed by photopolymerization between acrylic acid (AA) and TDC, and the noncovalent crosslinking was formed by intermolecular dopamine-dopamine and dopamine-AA interactions. Our resultant hydrogel demonstrated strong tissue adhesion in a moist environment (approximately 71 kPa) and high mechanical resilience (approximately 94%) with immediate recovery at a 200% strain rate. Moreover, it accelerated wound healing upon dressing the wound site properly. Our study provides the potential for advanced polymer synthesis by introducing a functional crosslinking agent.


Asunto(s)
Hidrogeles , Adhesivos Tisulares , Adhesivos , Vendajes , Dopamina , Humanos , Adherencias Tisulares
3.
ACS Appl Mater Interfaces ; 13(36): 43364-43373, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34469097

RESUMEN

Materials that can switch adhesive properties based on external stimuli are required in several industries for temporary bonding or transfer processes. Previously studied materials achieve this under restricted conditions (hydration, heat, and long switching times), and some materials have limitations related to reuse because of irreversible reactions or residue formation on substrates. Herein, a rapid photoresponsive switchable pressure-sensitive adhesive (PSA) fabricated using an acrylic polymer and an aliphatic monomer containing azobenzene is reported. The adhesion force of the proposed PSA can be switched by photoisomerizing the azobenzene moiety. The process induces the transition of surface energy and modulus of the PSA. Ultraviolet and visible light irradiation can switch the probe tack force from 200 to 4 kPa within 15-30 s. Adhesion switching is possible in a state wherein the PSA remains adhered to a substrate. Mini-LEDs are selectively transferred from the carrier PSA to a polydimethylsiloxane substrate following the process of partial adhesion switching of the PSA. The novel and switchable PSA, which exhibits a selective and repeatable adhesion switching property and high switching ratio when stimulated by light stimuli, may be potentially used to realize the mini-LED or micro-LED transfer processes.

4.
RSC Adv ; 11(59): 37392-37402, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35496405

RESUMEN

Unlike traditional adhesives with a fixed adhesive force, switchable adhesives, which have an adhesive force that can be adjusted by external stimuli, are specifically designed to be released according to user demand, or to enable the transfer of fine electronic devices. Previously developed switchable adhesives have limitations such as a slow switching rate, narrow adhesion modulation range, or the lack of reusability. Thus, we fabricated switchable pressure-sensitive adhesives (PSAs) that can overcome these limitations. The adhesive force of each switchable PSA, which comprises an azobenzene-containing acrylic polymer and low molecular weight compounds, was designed to be activated/deactivated via ultraviolet (UV) and visible light irradiation. The adhesive force and UV intensity required for the switch were found to be dependent on the aliphatic chain length of the compound. The adhesive force of the SP-C10, i.e., a switchable PSA containing a azobenzene compound with an aliphatic chain of 10 hydrocarbons, increased to 3.5 N from nearly zero in response to only 30 s of low-level (25 mW cm-2) UV irradiation. Additionally, SP-C10 did not lose its adhesive force even after 30 cycles of repeated adhesion switching. The mechanism of adhesion switching influenced by UV intensity and the structure of low molecular weight azobenzene compounds are also reported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...