Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38534569

RESUMEN

Speech impairments often emerge as one of the primary indicators of Parkinson's disease (PD), albeit not readily apparent in its early stages. While previous studies focused predominantly on binary PD detection, this research explored the use of deep learning models to automatically classify sustained vowel recordings into healthy controls, mild PD, or severe PD based on motor symptom severity scores. Popular convolutional neural network (CNN) architectures, VGG and ResNet, as well as vision transformers, Swin, were fine-tuned on log mel spectrogram image representations of the segmented voice data. Furthermore, the research investigated the effects of audio segment lengths and specific vowel sounds on the performance of these models. The findings indicated that implementing longer segments yielded better performance. The models showed strong capability in distinguishing PD from healthy subjects, achieving over 95% precision. However, reliably discriminating between mild and severe PD cases remained challenging. The VGG16 achieved the best overall classification performance with 91.8% accuracy and the largest area under the ROC curve. Furthermore, focusing analysis on the vowel /u/ could further improve accuracy to 96%. Applying visualization techniques like Grad-CAM also highlighted how CNN models focused on localized spectrogram regions while transformers attended to more widespread patterns. Overall, this work showed the potential of deep learning for non-invasive screening and monitoring of PD progression from voice recordings, but larger multi-class labeled datasets are needed to further improve severity classification.

2.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37511323

RESUMEN

Photodynamic therapy is an alternative approach to treating tumors that utilizes photochemical reactions between a photosensitizer and laser irradiation for the generation of reactive oxygen species. Currently, natural photosensitive compounds are being promised to replace synthetic photosensitizers used in photodynamic therapy because of their low toxicity, lesser side effects, and high solubility in water. Therefore, the present study investigated the anti-cancer efficacy of chlorophyllin-assisted photodynamic therapy on human cervical cancer by inducing apoptotic response through oxidative stress. The chlorophyllin-assisted photodynamic therapy significantly induced cytotoxicity, and the optimal conditions were determined based on the results, including laser irradiation time, laser power density, and chlorophyllin concentration. In addition, reactive oxygen species generation and Annexin V expression level were detected on the photodynamic reaction-treated HeLa cells under the optimized conditions to evaluate apoptosis using a fluorescence microscope. In the Western blotting analysis, the photodynamic therapy group showed the increased protein expression level of the cleaved caspase 8, caspase 9, Bax, and cytochrome C, and the suppressed protein expression level of Bcl-2, pro-caspase 8, and pro-caspase 9. Moreover, the proposed photodynamic therapy downregulated the phosphorylation of AKT1 in the HeLa cells. Therefore, our results suggest that the chlorophyllin-assisted photodynamic therapy has potential as an antitumor therapy for cervical cancer.


Asunto(s)
Fotoquimioterapia , Neoplasias del Cuello Uterino , Femenino , Humanos , Caspasa 9/metabolismo , Caspasa 8/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Células HeLa , Fotoquimioterapia/métodos , Apoptosis , Fármacos Fotosensibilizantes/química , Estrés Oxidativo
3.
Life (Basel) ; 13(5)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240713

RESUMEN

The airbreathing walking catfish (Clariidae: Clarias) comprises 32 species that are endemic to African freshwater systems. The species-level identification of this group is challenging due to their complex taxonomy and polymorphism. Prior to this study, the biological and ecological studies were restricted to a single species, Clarias gariepinus, resulting in a biased view of their genetic diversity in African waters. Here, we generated the 63-mitochondrial Cytochrome c oxidase subunit 1 (COI) gene sequences of Clarias camerunensis and Clarias gariepinus from the Nyong River in Cameroon. Both C. camerunensis and C. gariepinus species maintained adequate intra-species (2.7% and 2.31%) and inter-species (6.9% to 16.8% and 11.4% to 15.1%) genetic distances with other Clarias congeners distributed in African and Asian/Southeast Asian drainages. The mtCOI sequences revealed 13 and 20 unique haplotypes of C. camerunensis and C. gariepinus, respectively. The TCS networks revealed distinct haplotypes of C. camerunensis and shared haplotypes of C. gariepinus in African waters. The multiple species delimitation approaches (ABGD and PTP) revealed a total of 20 and 22 molecular operational taxonomic units (MOTUs), respectively. Among the two Clarias species examined, we found more than one MOTU in C. camerunensis, which is consistent with population structure and tree topology results. The phylogeny generated through Bayesian Inference analysis clearly separated C. camerunensis and C. gariepinus from other Clarias species with high posterior probability supports. The present study elucidates the occurrence of possible cryptic diversity and allopatric speciation of C. camerunensis in African drainages. Further, the present study confirms the reduced genetic diversity of C. gariepinus across its native and introduced range, which might have been induced by unscientific aquaculture practices. The study recommends a similar approach to the same and related species from different river basins to illuminate the true diversity of Clarias species in Africa and other countries.

4.
iScience ; 26(4): 106404, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37034997

RESUMEN

The manufacturing and consumption of plastic products have steadily increased over the past decades due to rising global demand, resulting not only in the depletion of petroleum resources but also increased environmental pollution due to the non-biodegradable nature of conventional plastics. Moreover, despite being introduced into the market as an alternative to conventional petroleum-based plastics, biobased plastics are mainly manufactured from agricultural crop-based sources, which has negative impacts on the environment and the livelihoods of people. Marine-derived bioplastics are becoming a promising and cost-effective solution to the rising demand for plastic products. The physicochemical, biological, and degradation properties of marine-derived bioplastics have made them promising substances for many applications. However, more research is required for their large-scale implementation. Therefore, this review summarizes the raw materials of marine-derived bioplastics such as algae, animals, and microorganisms, as well as their extraction processes and properties. These insights could thus accelerate the production of marine-derived bioplastics as a novel alternative to prevailing bioplastics by taking advantage of marine biomass.

5.
Mar Drugs ; 20(10)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36286477

RESUMEN

Coagulation is a potential defense mechanism that involves activating a series of zymogens to convert soluble fibrinogen to insoluble fibrin clots to prevent bleeding and hemorrhagic complications. To prevent the extra formation and diffusion of clots, the counterbalance inhibitory mechanism is activated at levels of the coagulation pathway. Contrariwise, this system can evade normal control due to either inherited or acquired defects or aging which leads to unusual clots formation. The abnormal formations and deposition of excess fibrin trigger serious arterial and cardiovascular diseases. Although heparin and heparin-based anticoagulants are a widely prescribed class of anticoagulants, the clinical use of heparin has limitations due to the unpredictable anticoagulation, risk of bleeding, and other complications. Hence, significant interest has been established over the years to investigate alternative therapeutic anticoagulants from natural sources, especially from marine sources with good safety and potency due to their unique chemical structure and biological activity. This review summarizes the coagulation cascade and potential macromolecular anticoagulants derived from marine flora and fauna.


Asunto(s)
Anticoagulantes , Trombosis , Humanos , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Heparina/farmacología , Hemorragia/inducido químicamente , Hemorragia/tratamiento farmacológico , Hemorragia/prevención & control , Trombosis/tratamiento farmacológico , Fibrina , Fibrinógeno , Precursores Enzimáticos
6.
Int J Biol Macromol ; 222(Pt A): 1137-1150, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36162531

RESUMEN

Wound dressing hydrogel with multifunctional properties, including antioxidant and antimicrobial properties and appropriate mechanical, biological, and physical properties is of great interest in wound healing application and it is still a challenge. In the present study, chitooligosaccharides (COS)/ sinapic acid (SA) conjugate (COS-SA) was synthesized using H2O2-induced grafting polymerization, and photo cross-linkable hyaluronic acid was synthesized using methacrilation (HAMA). The synthesis of COS-SA and HAMA was confirmed by Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, ultraviolet spectroscopy, and polyphenol assay. Subsequently, we developed duel cross-linked polyvinyl alcohol (PVA)/HAMA composite hydrogel encapsulated with COS-SA as an antioxidant and antimicrobial dressing for full-thickness wound healing application. The chemical, physical, mechanical, antioxidant, antimicrobial, in vitro biocompatibility, and in vivo wound healing properties of hydrogels were subsequently investigated. The results showed that the fabricated composite hydrogel had a uniform porous architecture, excellent fluid absorbability, and appropriate mechanical stability. The introduction of COSs-SA conjugate remarkably enhanced the in vitro biocompatibility, antioxidant, and antimicrobial properties of the hydrogel, leading to the significant promotion of in vivo full-thickness wound closure, re-epithelization, granulation tissue formation, and collagen deposition indicating that COSs-SA incorporated PVA/HAMA hydrogel wound dressing has significant potential for chronic wound healing application.


Asunto(s)
Antiinfecciosos , Alcohol Polivinílico , Alcohol Polivinílico/química , Ácido Hialurónico , Metacrilatos , Antioxidantes/farmacología , Peróxido de Hidrógeno , Vendajes , Hidrogeles/química , Antibacterianos/farmacología
7.
Biomater Adv ; 140: 213046, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35930818

RESUMEN

An extracellular matrix-mimicking, biodegradable tissue-engineered skin substitute with improved antibacterial, antibiofilm, and wound healing capabilities is essential in skin tissue regeneration applications. The purpose of this study was to develop a novel biodegradable composite nanofibrous poly(ε-caprolactone) (PCL)/decellularized extracellular matrix (dECM) scaffolds loaded with usnic acid (UA); (PEU), where UA is employed as an antibacterial agent as well as a wound-healing accelerator. The architecture and fiber structure of the scaffolds were examined using scanning electron microscopy, and the results revealed that the average diameters decreased as the dECM content increased. The chemical composition, changes in the crystalline structure, homogeneity, and thermal stability of the nanofiber scaffolds with different material compositions were determined using Fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis, respectively. The composite nanofibrous scaffolds exhibited strong antibacterial activity against various bacterial species, such as Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, and Cutibactrium acnes, and fungal pathogens (such as Candida albicans). Additionally, the composite nanofibrous scaffolds exhibited biofilm inhibition properties against Klebsiella pneumoniae and Pseudomonas aeruginosa. An evaluation of the appearance of in vivo full-thickness excisional wounds treated with the composite nanofiber scaffolds, as well as a histological analysis of the wounds 21 days after surgery, revealed that treatment with nanofibrous PEU scaffolds enhanced wound healing. This study reveals that the proposed composite nanofibrous PEU scaffold has substantial potential for treating infectious full-thickness wounds.


Asunto(s)
Nanofibras , Infección de Heridas , Antibacterianos/farmacología , Benzofuranos , Matriz Extracelular Descelularizada , Humanos , Nanofibras/química , Poliésteres , Andamios del Tejido/química , Cicatrización de Heridas , Infección de Heridas/tratamiento farmacológico
8.
Mar Drugs ; 20(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35736147

RESUMEN

In bone tissue regeneration, extracellular matrix (ECM) and bioceramics are important factors, because of their osteogenic potential and cell-matrix interactions. Surface modifications with hydrophilic material including proteins show significant potential in tissue engineering applications, because scaffolds are generally fabricated using synthetic polymers and bioceramics. In the present study, carbonated hydroxyapatite (CHA) and marine atelocollagen (MC) were extracted from the bones and skins, respectively, of Paralichthys olivaceus. The extracted CHA was characterized using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analysis, while MC was characterized using FTIR spectroscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The scaffolds consisting of polycaprolactone (PCL), and different compositions of CHA (2.5%, 5%, and 10%) were fabricated using a three-axis plotting system and coated with 2% MC. Then, the MC3T3-E1 cells were seeded on the scaffolds to evaluate the osteogenic differentiation in vitro, and in vivo calvarial implantation of the scaffolds was performed to study bone tissue regeneration. The results of mineralization confirmed that the MC/PCL, 2.5% CHA/MC/PCL, 5% CHA/MC/PCL, and 10% CHA/MC/PCL scaffolds increased osteogenic differentiation by 302%, 858%, 970%, and 1044%, respectively, compared with pure PCL scaffolds. Consequently, these results suggest that CHA and MC obtained from byproducts of P. olivaceus are superior alternatives for land animal-derived substances.


Asunto(s)
Durapatita , Osteogénesis , Animales , Regeneración Ósea , Colágeno , Durapatita/química , Durapatita/farmacología , Poliésteres/química , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
9.
Molecules ; 27(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35408673

RESUMEN

The voltage-gated proton channel Hv1 has important roles in proton extrusion, pH homeostasis, sperm motility, and cancer progression. The Hv1 channel has also been found to be highly expressed in cell lines and tissue samples from patients with breast cancer. A high-resolution closed-state structure has been reported for the mouse Hv1 chimera channel (mHv1cc), solved by X-ray crystallography, but the open-state structure of Hv1 has not been solved. Since Hv1 is a promising drug target, various groups have proposed open conformations by molecular modeling and simulation studies. However, the gating mechanism and the open-state conformation under the membrane potential are still debate. Here, we present a molecular dynamics study considering membrane potential and pH conditions. The closed-state structure of mHv1cc was used to run molecular dynamics (MD) simulations with respect to electric field and pH conditions in order to investigate the mechanism of proton transfer. We observed a continuous hydrogen bond chain of water molecules called a water-wire to be formed through the channel pore in the channel opening, triggered by downward displacement of the S2 helix and upward movement of the S4 helix relative to other helices. Due to the movement of the S2 and S4 helices, the internal salt bridge network was rearranged, and the hydrophobic gating layers were destroyed. In line with previous experimental and simulation observations, our simulation results led us to propose a new gating mechanism for the Hv1 proton channel, and may provide valuable information for novel drug discovery.


Asunto(s)
Simulación de Dinámica Molecular , Protones , Animales , Humanos , Activación del Canal Iónico , Canales Iónicos/metabolismo , Masculino , Ratones , Motilidad Espermática , Agua/química
10.
Diagnostics (Basel) ; 12(2)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35204623

RESUMEN

An analysis of scar tissue is necessary to understand the pathological tissue conditions during or after the wound healing process. Hematoxylin and eosin (HE) staining has conventionally been applied to understand the morphology of scar tissue. However, the scar lesions cannot be analyzed from a whole slide image. The current study aimed to develop a method for the rapid and automatic characterization of scar lesions in HE-stained scar tissues using a supervised and unsupervised learning algorithm. The supervised learning used a Mask region-based convolutional neural network (RCNN) to train a pattern from a data representation using MMDetection tools. The K-means algorithm characterized the HE-stained tissue and extracted the main features, such as the collagen density and directional variance of the collagen. The Mask RCNN model effectively predicted scar images using various backbone networks (e.g., ResNet50, ResNet101, ResNeSt50, and ResNeSt101) with high accuracy. The K-means clustering method successfully characterized the HE-stained tissue by separating the main features in terms of the collagen fiber and dermal mature components, namely, the glands, hair follicles, and nuclei. A quantitative analysis of the scar tissue in terms of the collagen density and directional variance of the collagen confirmed 50% differences between the normal and scar tissues. The proposed methods were utilized to characterize the pathological features of scar tissue for an objective histological analysis. The trained model is time-efficient when used for detection in place of a manual analysis. Machine learning-assisted analysis is expected to aid in understanding scar conditions, and to help establish an optimal treatment plan.

11.
Cell Biochem Funct ; 40(1): 71-78, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34708431

RESUMEN

The phlorotannin derivative dieckol isolated from Ecklonia cava has been shown to exhibit anti-inflammatory, anti-bacterial, anti-oxidative anti-adipogenic and anti-stenosis activity. However, the role of dieckol in cyclin-dependent kinase 2 (CDK2)/cyclin E signalling, which regulates fibrosis development, has not yet been determined. In this study, we report that dieckol-suppressed cell proliferation through the cell cycle arrest of Hs680.Tr human tracheal fibroblasts. Following consecutive purification, dieckol was identified as a potent bioactive compound. The results showed that dieckol had significant anti-proliferative activity against Hs680.Tr human tracheal fibroblastsWestern blotting analysis also found that dieckol dose-dependently induced the cell cycle arrest of Hs680.Tr fibroblasts in the G0/G1 phase, accompanied by the downregulation of CDK2 and cyclin E and the upregulation of p21 and p53. As attested by molecular docking study, the dieckol interacted with the core interface residues in transforming growth factor-ß receptor with high affinity. These findings suggest that dieckol from E. cava inhibits the cell proliferation of Hs680.Tr, potentially through p21- and p53-mediated G0/G1 cell cycle arrest.


Asunto(s)
Benzofuranos/farmacología , Ciclina E , Quinasa 2 Dependiente de la Ciclina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Proteína p53 Supresora de Tumor , Ciclo Celular , Puntos de Control del Ciclo Celular , Células Cultivadas , Ciclina E/genética , Ciclina E/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Fibroblastos/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Proteínas Oncogénicas
12.
Molecules ; 26(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802244

RESUMEN

The authors wish to make the following corrections to the paper [...].

13.
Proc Natl Acad Sci U S A ; 117(22): 11908-11915, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32414918

RESUMEN

Water wires are critical for the functioning of many membrane proteins, as in channels that conduct water, protons, and other ions. Here, in liquid crystalline lipid bilayers under symmetric environmental conditions, the selective hydrogen bonding interactions between eight waters comprising a water wire and a subset of 26 carbonyl oxygens lining the antiparallel dimeric gramicidin A channel are characterized by 17O NMR spectroscopy at 35.2 T (or 1,500 MHz for 1H) and computational studies. While backbone 15N spectra clearly indicate structural symmetry between the two subunits, single site 17O labels of the pore-lining carbonyls report two resonances, implying a break in dimer symmetry caused by the selective interactions with the water wire. The 17O shifts document selective water hydrogen bonding with carbonyl oxygens that are stable on the millisecond timescale. Such interactions are supported by density functional theory calculations on snapshots taken from molecular dynamics simulations. Water hydrogen bonding in the pore is restricted to just three simultaneous interactions, unlike bulk water environs. The stability of the water wire orientation and its electric dipole leads to opposite charge-dipole interactions for K+ ions bound at the two ends of the pore, thereby providing a simple explanation for an ∼20-fold difference in K+ affinity between two binding sites that are ∼24 Šapart. The 17O NMR spectroscopy reported here represents a breakthrough in high field NMR technology that will have applications throughout molecular biophysics, because of the acute sensitivity of the 17O nucleus to its chemical environment.


Asunto(s)
Gramicidina/química , Canales Iónicos/química , Espectroscopía de Resonancia Magnética/métodos , Agua/química , Sitios de Unión , Fenómenos Biofísicos , Microambiente Celular , Biología Computacional , Enlace de Hidrógeno , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Isótopos de Oxígeno/metabolismo
14.
Molecules ; 25(6)2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178362

RESUMEN

The inhibition of human angiotensin I converting enzyme (ACE) has been regarded as a promising approach for the treatment of hypertension. Despite research attempts over many years, our understanding the mechanisms of activation and inhibition of ACE is still far from complete. Here, we present results of all atom molecular dynamics simulations of ACE with and without ligands. Two types of inhibitors, competitive and mixed non-competitive, were used to model the ligand bound forms. In the absence of a ligand the simulation showed spontaneous large hinge-bending motions of multiple conversions between the closed and open states of ACE, while the ligand bound forms were stable in the closed state. Our simulation results imply that the equilibrium between pre-existing backbone conformations shifts in the presence of a ligand. The hinge-bending motion of ACE is considered as an essential to the enzyme function. A mechanistic model of activation and the inhibition may provide valuable information for novel inhibitors of ACE.


Asunto(s)
Hipertensión/tratamiento farmacológico , Peptidil-Dipeptidasa A/química , Unión Proteica/efectos de los fármacos , Conformación Proteica , Sitios de Unión/efectos de los fármacos , Humanos , Hipertensión/genética , Ligandos , Simulación de Dinámica Molecular , Peptidil-Dipeptidasa A/efectos de los fármacos , Peptidil-Dipeptidasa A/ultraestructura , Termodinámica
15.
Int J Mol Med ; 44(5): 1979-1987, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31432146

RESUMEN

Sargassum thunbergii is a brown alga from which various bioactive compounds can be extracted. Among these, the activities of indole derivatives, particularly as potential inhibitors of matrix metalloproteinases (MMPs), and their underlying mechanisms have been rarely investigated. Therefore, we evaluated the inhibitory effects of indole­6­carboxaldehyde (I6CA) on MMP­9 by gelatin zymography and western blot anlaysis. We used phorbol 12­myristate 13­acetate (PMA), which is known to induce MMP­9 expression and secretion, to stimulate HT1080 cells. Our results revealed that I6CA significantly inhibited MMP­9 expression and secretion, without significantly affecting the viability of PMA­stimulated HT1080 cells. Our mechanistic studies indicated that I6CA suppressed the phosphorylation and activation of two mitogen­activated protein kinases (MAPKs), c­Jun N­terminal kinase (JNK) and extracellular signal­regulated kinase 1/2 (ERK). Furthermore, I6CA inhibited the phosphorylation of inhibitor of κBα (IκBα) in response to PMA stimulation, which suppressed nuclear factor­κB (NF­κB) p65 subunit nuclear translocation. Collectively, I6CA was determined to suppress MMP­9 expression and secretion, and effects were proposed to be mediated via the inhibition of the MAPK and NF­κB p65 pathways. Therefore, we suggested I6CA to be a potential therapeutic agent for MMP­9­related processes, including tumor invasion and metastasis; however, further investigation is required.


Asunto(s)
Indoles/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Sargassum/química , Línea Celular Tumoral , Humanos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Biochemistry ; 58(17): 2208-2217, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30950267

RESUMEN

In cellular environments, proteins not only interact with their specific partners but also encounter a high concentration of bystander macromolecules, or crowders. Nonspecific interactions with macromolecular crowders modulate the activities of proteins, but our knowledge about the rules of nonspecific interactions is still very limited. In previous work, we presented experimental evidence that macromolecular crowders acted competitively in inhibiting the binding of maltose binding protein (MBP) with its ligand maltose. Competition between a ligand and an inhibitor may result from binding to either the same site or different conformations of the protein. Maltose binds to the cleft between two lobes of MBP, and in a series of mutants, the affinities increased with an increase in the extent of lobe closure. Here we investigated whether macromolecular crowders also have a conformational or site preference when binding to MBP. The affinities of a polymer crowder, Ficoll70, measured by monitoring tryptophan fluorescence were 3-6-fold higher for closure mutants than for wild-type MBP. Competition between the ligand and crowder, as indicated by fitting of titration data and directly by nuclear magnetic resonance spectroscopy, and their similar preferences for closed MBP conformations further suggest the scenario in which the crowder, like maltose, preferentially binds to the interlobe cleft of MBP. Similar observations were made for bovine serum albumin as a protein crowder. Conformational and site preferences in MBP-crowder binding allude to the paradigm that nonspecific interactions can possess hallmarks of molecular recognition, which may be essential for intracellular organizations including colocalization of proteins and liquid-liquid phase separation.


Asunto(s)
Sustancias Macromoleculares/química , Proteínas de Unión a Maltosa/química , Conformación Proteica , Ligandos , Sustancias Macromoleculares/metabolismo , Espectroscopía de Resonancia Magnética , Maltosa/química , Maltosa/metabolismo , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Unión Proteica
17.
Front Microbiol ; 9: 2059, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233536

RESUMEN

The use of probiotics is considered an attractive biocontrol method. It is effective in growth promotion in aquaculture. However, the mode of action of probiotics in fish in terms of growth promotion remains unclear. The objective of the present study was to investigate growth promotion effect of dietary administration of host-derived probiotics, Lactococcus lactis WFLU12, on olive flounder compared to control group fed with basal diet by analyzing their intestinal and serum metabolome using capillary electrophoresis mass spectrometry with time-of flight (CE-TOFMS). Results of CE-TOFMS revealed that 53 out of 200 metabolites from intestinal luminal metabolome and 5 out of 171 metabolites from serum metabolome, respectively, were present in significantly higher concentrations in the probiotic-fed group than those in the control group. Concentrations of metabolites such as citrulline, tricarboxylic acid cycle (TCA) intermediates, short chain fatty acids, vitamins, and taurine were significantly higher in the probiotic-fed group than those in the control group. The probiotic strain WFLU12 also possesses genes encoding enzymes to help produce these metabolites. Therefore, it is highly likely that these increased metabolites linked to growth promotion in olive flounder are due to supplementation of the probiotic strain. To the best of our knowledge, this is the first study to show that dietary probiotics can greatly influence metabolome in fish. Findings of the present study may reveal important implications for maximizing the efficiency of using dietary additives to optimize fish health and growth.

18.
J Enzyme Inhib Med Chem ; 33(1): 1430-1443, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30220229

RESUMEN

In this work, a target-based drug screening method is proposed exploiting the synergy effect of ligand-based and structure-based computer-assisted drug design. The new method provides great flexibility in drug design and drug candidates with considerably lower risk in an efficient manner. As a model system, 45 sulphonamides (33 training, 12 testing ligands) in complex with carbonic anhydrase IX were used for development of quantitative structure-activity-lipophilicity (property)-relationships (QSPRs). For each ligand, nearly 5,000 molecular descriptors were calculated, while lipophilicity (logkw) and inhibitory activity (logKi) were used as drug properties. Genetic algorithm-partial least squares (GA-PLS) provided a QSPR model with high prediction capability employing only seven molecular descriptors. As a proof-of-concept, optimal drug structure was obtained by inverting the model with respect to reference drug properties. 3509 ligands were ranked accordingly. Top 10 ligands were further validated through molecular docking. Large-scale MD simulations were performed to test the stability of structures of selected ligands obtained through docking complemented with biophysical experiments.


Asunto(s)
Antígenos de Neoplasias/química , Anhidrasa Carbónica IX/química , Descubrimiento de Drogas/métodos , Simulación del Acoplamiento Molecular , Sulfanilamidas/química , Anhidrasa Carbónica IX/antagonistas & inhibidores , Anhidrasa Carbónica IX/síntesis química , Cromatografía Liquida , Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Relación Estructura-Actividad Cuantitativa , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Sulfanilamida
19.
Cell Biochem Funct ; 36(3): 137-146, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29392739

RESUMEN

Fish bone, a by-product of fishery processing, is composed of protein, calcium, and other minerals. The objective of this study was to investigate the effects of a bioactive peptide isolated from the bone of the marine fish, Johnius belengerii, on the osteoblastic differentiation of MC3T3-E1 pre-osteoblasts. Post consecutive purification by liquid chromatography, a potent osteogenic peptide, composed of 3 amino acids, Lys-Ser-Ala (KSA, MW: 304.17 Da), was identified. The purified peptide promoted cell proliferation, alkaline phosphatase activity, mineral deposition, and expression levels of phenotypic markers of osteoblastic differentiation in MC3T3-E1 pre-osteoblast. The purified peptide induced phosphorylation of mitogen-activated protein kinases, including p38 mitogen-activated protein kinase, extracellular regulated kinase, and c-Jun N-terminal kinase as well as Smads. As attested by molecular modelling study, the purified peptide interacted with the core interface residues in bone morphogenetic protein receptors with high affinity. Thus, the purified peptide could serve as a potential pharmacological substance for controlling bone metabolism.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Huesos/química , Proteínas de Peces/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Proteínas Smad/metabolismo , Células 3T3 , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Proteínas de Peces/aislamiento & purificación , Gadiformes , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Modelos Moleculares , Osteoblastos/citología , Osteoblastos/metabolismo , Regulación hacia Arriba/efectos de los fármacos
20.
Int J Mol Med ; 39(5): 1072-1082, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28393188

RESUMEN

In this study, a marine microalga Spirulina sp.-derived protein was hydrolyzed using gastrointestinal enzymes to produce an angiotensin I (Ang I)-converting enzyme (ACE) inhibitory peptide. Following consecutive purification, the potent ACE inhibitory peptide was composed of 7 amino acids, Thr-Met­Glu­Pro­Gly­Lys-Pro (molecular weight, 759 Da). Analysis using the Lineweaver-Burk plot and molecular modeling suggested that the purified peptide acted as a mixed non-competitive inhibitor of ACE. The inhibitory effects of the peptide against the cellular production of vascular dysfunction-related factors induced by Ang II were also investigated. In human endothelial cells, the Ang II-induced production of nitric oxide and reactive oxygen species was inhibited, and the expression of inducible nitric oxide synthase (iNOS) and endothelin-1 (ET-1) was downregulated when the cells were cultured with the purified peptide. Moreover, the peptide blocked the activation of p38 mitogen­activated protein kinase. These results indicated that this Spirulina sp.-derived peptide warrants further investigation as a potential pharmacological inhibitor of ACE and vascular dysfunction.


Asunto(s)
Angiotensina II/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Vasos Sanguíneos/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Péptidos/farmacología , Peptidil-Dipeptidasa A/metabolismo , Spirulina , Secuencia de Aminoácidos , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/aislamiento & purificación , Sitios de Unión , Vasos Sanguíneos/metabolismo , Células Endoteliales/metabolismo , Tracto Gastrointestinal/metabolismo , Humanos , Hidrólisis , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Moleculares , Peso Molecular , Óxido Nítrico/metabolismo , Péptidos/química , Péptidos/aislamiento & purificación , Peptidil-Dipeptidasa A/química , Unión Proteica , Conformación Proteica , Especies Reactivas de Oxígeno/metabolismo , Spirulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA