Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(13): 3778-3796, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38616410

RESUMEN

Rho of Plants (ROPs) constitute a plant-specific subset of small guanine nucleotide-binding proteins within the Cdc42/Rho/Rac family. These versatile proteins regulate diverse cellular processes, including cell growth, cell division, cell morphogenesis, organ development, and stress responses. In recent years, the dynamic cellular and subcellular behaviours orchestrated by ROPs have unveiled a notable connection to hormone-mediated organ development and physiological responses, thereby expanding our knowledge of the functions and regulatory mechanisms of this signalling pathway. This review delineates advancements in understanding the interplay between plant hormones and the ROP signalling cascade, focusing primarily on the connections with auxin and abscisic acid pathways, alongside preliminary discoveries in cytokinin, brassinosteroid, and salicylic acid responses. It endeavours to shed light on the intricate, coordinated mechanisms bridging cell- and tissue-level signals that underlie plant cell behaviour, organ development, and physiological processes, and highlights future research prospects and challenges in this rapidly developing field.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Transducción de Señal , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo
2.
Plant Signal Behav ; 19(1): 2306790, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38270144

RESUMEN

Plant-specific Rho-type GTPases (ROPs) are master regulators of cell polarity and development. Over the past 30 years, their localization and dynamics have been largely examined with fluorescent proteins fused at the amino terminus without investigating their impact on protein function. The moss Physcomitrium patens genome encodes four rop genes. In this study, we introduce a fluorescent tag at the endogenous amino terminus of ROP4 in wild-type and rop1,2,3 triple mutant via homologous recombination and demonstrate that the fluorescent tag severely impairs ROP4 function and inhibits its localization on the plasma membrane. This phenotype is exacerbated in mutants lacking ROP-related GTPase-activating proteins. By comparing the localization of nonfunctional and functional ROP4 fusion reporters, we provide insight into the mechanism that governs the membrane association of ROPs.


Asunto(s)
Briófitas , Bryopsida , Membrana Celular , Bryopsida/genética , Polaridad Celular , Recombinación Homóloga
3.
Nat Commun ; 14(1): 7084, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925570

RESUMEN

The establishment of cell polarity is a prerequisite for many developmental processes. However, how it is achieved during tip growth in plants remains elusive. Here, we show that the RHO OF PLANTs (ROPs), ROP GUANINE NUCLEOTIDE EXCHANGE FACTORs (RopGEFs), and ROP GTPASE-ACTIVATING PROTEINs (RopGAPs) assemble into membrane domains in tip-growing cells of the moss Physcomitrium patens. The confinement of membrane domains requires redundant global inactivation of ROPs by PpRopGAPs and the PLECKSTRIN HOMOLOGY (PH) domain-containing RenGAP PpREN. Unexpectedly, PpRopGAPs and PpREN exert opposing effects on domain size and cell width upon overexpression. Biochemical and functional analyses indicate that PpRopGAPs are recruited to the membrane by active ROPs to restrict domain size through clustering, whereas PpREN rapidly inactivates ROPs and inhibits PpRopGAP-induced clustering. We propose that the activity- and clustering-based domain organization by RopGAPs and RenGAPs is a general mechanism for coordinating polarized cell growth and cell size regulation in plants.


Asunto(s)
Proteínas Activadoras de GTPasa , Factores de Intercambio de Guanina Nucleótido , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Plantas/metabolismo , Proteínas de Unión al GTP rho/metabolismo
4.
Plant Cell Rep ; 42(6): 1107-1124, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37052714

RESUMEN

KEYMESSAGE: The putative myristoylome of moss P. patens opens an avenue for studying myristoylation substrates in non-canonical model plants. A myristoylation signal was shown sufficient for membrane targeting and useful for membrane dynamics visualization during cell growth. N-myristoylation (MYR) is one form of lipid modification catalyzed by N-myristoyltransferase that enables protein-membrane association. MYR is highly conserved in all eukaryotes. However, the study of MYR is limited to a few models such as yeasts, humans, and Arabidopsis. Here, using prediction tools, we report the characterization of the putative myristoylome of the moss Physcomitrium patens. We show that basal land plants display a similar signature of MYR to Arabidopsis and may have organism-specific substrates. Phylogenetically, MYR signals have mostly co-evolved with protein function but also exhibit variability in an organism-specific manner. We also demonstrate that the MYR motif of a moss brassinosteroid-signaling kinase is an efficient plasma membrane targeting signal and labels lipid-rich domains in tip-growing cells. Our results provide insights into the myristoylome in a basal land plant and lay the foundation for future studies on MYR and its roles in plant evolution.


Asunto(s)
Arabidopsis , Briófitas , Bryopsida , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Briófitas/genética , Transducción de Señal , Lípidos
5.
New Phytol ; 236(1): 49-57, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35832004

RESUMEN

Polar cell growth in plants requires a cell peripheral region that undergoes membrane extension and cell wall remodeling. Since the 1990s, RHO-RELATED GTPASES FROM PLANTS (ROPs) have been identified as master regulators that determine the site of cell growth. ROPs function to regulate actin and microtubule cytoskeletons, calcium gradients, and exocytosis, thus directing the delivery of materials for membrane and cell wall extension. In recent years, our understanding of the regulatory mechanisms underlying polar localization and the activation of ROPs has greatly advanced. Evidence points to the crucial roles of membrane lipids, receptor-like kinases, and cell wall components. In this review, we provide updates on the mechanisms underlying polarity control in tip-growing cells, with a focus on ROP effectors and membrane-associated signals. By integrating knowledge from pollen tubes, root hairs, and findings in bryophyte protonema cells and rhizoids, we hope to offer important insights into a common conceptual framework on polarity establishment governed by intercellular and extracellular signals.


Asunto(s)
Tubo Polínico , Transducción de Señal , Citoesqueleto/metabolismo , Plantas/metabolismo , Proteínas de Unión al GTP rho/metabolismo
6.
Planta ; 256(1): 1, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35616774

RESUMEN

MAIN CONCLUSION: Exogenous BAP but not 2iP disrupts actin structures and induces tip-growth retardation and cytokinesis failure in the moss Physcomitrium patens. Synthetic cytokinins have been widely used to address hormonal responses during plant development. However, exogenous cytokinins can cause a variety of cellular effects. A detailed characterization of such effects has not been well studied. Here, using Physcomitrium patens as a model, we show that the aromatic cytokinin 6-benzylaminopurine (BAP) inhibits tip growth at concentrations above 0.2 µM. At higher concentrations (0.6-1 µM), BAP can additionally block mitotic entry and induce cytokinesis defects and cell death. These effects are associated with altered actin dynamics and structures. By contrast, 2-isopentenyladenine (2iP) does not cause marked defects at various concentrations up to 10 µM, while t-zeatin (tZ) can moderately inhibit moss growth. Our results provide mechanistic insight into the inhibitory effects of BAP on cell growth and cell division and call for attention to the use of synthetic cytokinins for bioassays.


Asunto(s)
Briófitas , Bryopsida , Actinas/metabolismo , Compuestos de Bencilo , Bryopsida/metabolismo , Citocinesis , Citocininas/metabolismo , Citocininas/farmacología , Purinas
7.
Plant Cell ; 34(6): 2120-2139, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35201345

RESUMEN

During development, both animals and plants exploit asymmetric cell division (ACD) to increase tissue complexity, a process that usually generates cells dissimilar in size, morphology, and fate. Plants lack the key regulators that control ACD in animals. Instead, plants have evolved two unique cytoskeletal structures to tackle this problem: the preprophase band (PPB) and phragmoplast. The assembly of the PPB and phragmoplast and their contributions to division plane orientation have been extensively studied. However, how the division plane is positioned off the cell center during asymmetric division is poorly understood. Over the past 20 years, emerging evidence points to a critical role for polarly localized membrane proteins in this process. Although many of these proteins are species- or cell type specific, and the molecular mechanism underlying division asymmetry is not fully understood, common features such as morphological changes in cells, cytoskeletal dynamics, and nuclear positioning have been observed. In this review, we provide updates on polarity establishment and nuclear positioning during ACD in plants. Together with previous findings about symmetrically dividing cells and the emerging roles of developmental cues, we aim to offer evolutionary insight into a common framework for asymmetric division-site determination and highlight directions for future work.


Asunto(s)
División Celular Asimétrica , Plantas , Citoplasma , Citoesqueleto/metabolismo , Plantas/genética , Plantas/metabolismo
8.
Science ; 373(6558): 984-991, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34446600

RESUMEN

Protein kinase activity must be precisely regulated, but how a cell governs hyperactive kinases remains unclear. In this study, we generated a constitutively active mitogen-activated protein kinase DYF-5 (DYF-5CA) in Caenorhabditis elegans that disrupted sensory cilia. Genetic suppressor screens identified that mutations of ADR-2, an RNA adenosine deaminase, rescued ciliary phenotypes of dyf-5CA We found that dyf-5CA animals abnormally transcribed antisense RNAs that pair with dyf-5CA messenger RNA (mRNA) to form double-stranded RNA, recruiting ADR-2 to edit the region ectopically. RNA editing impaired dyf-5CA mRNA splicing, and the resultant intron retentions blocked DYF-5CA protein translation and activated nonsense-mediated dyf-5CA mRNA decay. The kinase RNA editing requires kinase hyperactivity. The similar RNA editing-dependent feedback regulation restricted the other ciliary kinases NEKL-4/NEK10 and DYF-18/CCRK, which suggests a widespread mechanism that underlies kinase regulation.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Cilios/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Edición de ARN , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Cilios/enzimología , Activación Enzimática , Fenotipo , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , Estabilidad del ARN , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN de Helminto/genética , ARN de Helminto/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Transcripción Genética
9.
Curr Biol ; 30(14): 2860-2868.e3, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32470363

RESUMEN

Branching morphogenesis is a widely used mechanism for development [1, 2]. In plants, it is initiated by the emergence of a new growth axis, which is of particular importance for plants to explore space and access resources [1]. Branches can emerge either from a single cell or from a group of cells [3-5]. In both cases, the mother cells that initiate branching must undergo dynamic morphological changes and/or adopt oriented asymmetric cell divisions (ACDs) to establish the new growth direction. However, the underlying mechanisms are not fully understood. Here, using the bryophyte moss Physcomitrella patens as a model, we show that side-branch formation in P. patens protonemata requires coordinated polarized cell expansion, directional nuclear migration, and orientated ACD. By combining pharmacological experiments, long-term time-lapse imaging, and genetic analyses, we demonstrate that Rho of plants (ROP) GTPases and actin are essential for cell polarization and local cell expansion (bulging). The growing bulge acts as a prerequisite signal to guide long-distance microtubule (MT)-dependent nuclear migration, which determines the asymmetric positioning of the division plane. MTs play an essential role in nuclear migration but are less involved in bulge formation. Hence, cell polarity and cytoskeletal elements act cooperatively to modulate cell morphology and nuclear positioning during branch initiation. We propose that polarity-triggered nuclear positioning and ACD comprise a fundamental mechanism for increasing multicellularity and tissue complexity during plant morphogenesis.


Asunto(s)
Actinas/fisiología , División Celular Asimétrica/genética , División Celular Asimétrica/fisiología , Bryopsida/crecimiento & desarrollo , Bryopsida/genética , GTP Fosfohidrolasas/fisiología , Desarrollo de la Planta/genética , Desarrollo de la Planta/fisiología , Transporte Activo de Núcleo Celular , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Bryopsida/citología , Núcleo Celular/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/fisiología , Microtúbulos/metabolismo
11.
Curr Opin Plant Biol ; 46: 1-7, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29981930

RESUMEN

Centrosomes play various critical roles in animal cells such as microtubule nucleation and stabilization, mitotic spindle morphogenesis, and spindle orientation. Land plants have lost centrosomes and yet must execute many of these functions. Recent studies have revealed the crucial roles played by morphologically distinct cytoplasmic microtubule-organizing centers (MTOCs) in initiating spindle bipolarity and maintaining spindle orientation robustness. These MTOCs resemble centrosomes in many aspects, implying an evolutionary divergence of MT-organizing structures in plants. However, their functions rely on conserved nucleation and amplification mechanisms, indicating a similarity in MT network establishment between animals and plants. Moreover, recent characterization of a plant-specific MT minus-end tracking protein suggests that plants have developed functionally equivalent modules to stabilize and organize MTs at minus ends. These findings support the theory that plants overcome centrosome loss by utilizing modified but substantially conserved mechanisms to organize MT networks.


Asunto(s)
Centrosoma/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Células Vegetales/fisiología , Centrosoma/ultraestructura , Centro Organizador de los Microtúbulos/ultraestructura , Huso Acromático/metabolismo , Huso Acromático/ultraestructura
12.
Traffic ; 19(7): 522-535, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29655266

RESUMEN

Kinesin-2 motors power anterograde intraflagellar transport (IFT), a highly ordered process that assembles and maintains cilia. However, it remains elusive how kinesin-2 motors are regulated in vivo. Here, we performed forward genetic screens to isolate suppressors that rescue the ciliary defects of OSM-3-kinesin (homolog of mammalian homodimeric kinesin-2 KIF17) mutants in Caenorhabditis elegans. We identified the C. elegans dyf-5 and dyf-18, which encode the homologs of mammalian male germ cell-associated kinase and cell cycle-related kinase, respectively. Using time-lapse fluorescence microscopy, we show that DYF-5 and DYF-18 are IFT cargo molecules and are enriched at the distal segments of sensory cilia. Mutations of dyf-5 and dyf-18 generate elongated cilia and ectopic localization of the heterotrimeric kinesin-2 (kinesin-II) at the ciliary distal segments. Genetic analyses reveal that dyf-5 and dyf-18 are important for stabilizing the interaction between IFT particles and OSM-3-kinesin. Our data suggest that DYF-5 and DYF-18 act in the same pathway to promote handover between kinesin-II and OSM-3 in sensory cilia.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cilios/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas
13.
EMBO J ; 36(17): 2553-2566, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28743734

RESUMEN

Neuronal cilia that are formed at the dendritic endings of sensory neurons are essential for sensory perception. However, it remains unclear how the centriole-derived basal body is positioned to form a template for cilium formation. Using fluorescence time-lapse microscopy, we show that the centriole translocates from the cell body to the dendrite tip in the Caenorhabditis elegans sensory neurons. The centriolar protein SAS-5 interacts with the dynein light-chain LC8 and conditional mutations of cytoplasmic dynein-1 block centriole translocation and ciliogenesis. The components of the central tube are essential for the biogenesis of centrioles, which later drive ciliogenesis in the dendrite; however, the centriole loses these components at the late stage of centriole translocation and subsequently recruits transition zone and intraflagellar transport proteins. Together, our results provide a comprehensive model of ciliogenesis in sensory neurons and reveal the importance of the dynein-dependent centriole translocation in this process.


Asunto(s)
Centriolos/fisiología , Cilios/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dineínas/metabolismo , Morfogénesis
14.
Curr Biol ; 27(10): 1448-1461.e7, 2017 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-28479320

RESUMEN

Cytoplasmic dynein-2 powers retrograde intraflagellar transport that is essential for cilium formation and maintenance. Inactivation of dynein-2 by mutations in DYNC2H1 causes skeletal dysplasias, and it remains unclear how the dynein-2 heavy chain moves in cilia. Here, using the genome-editing technique to produce fluorescent dynein-2 heavy chain in Caenorhabditis elegans, we show by high-resolution live microscopy that dynein-2 moves in a surprising way along distinct ciliary domains. Dynein-2 shows triphasic movement in the retrograde direction: dynein-2 accelerates in the ciliary distal region and then moves at maximum velocity and finally decelerates adjacent to the base, which may represent a physical obstacle due to transition zone barriers. By knocking the conserved ciliopathy-related mutations into the C. elegans dynein-2 heavy chain, we find that these mutations reduce its transport speed and frequency. Disruption of the dynein-2 tail domain, light intermediate chain, or intraflagellar transport (IFT)-B complex abolishes dynein-2's ciliary localization, revealing their important roles in ciliary entry of dynein-2. Furthermore, our affinity purification and genetic analyses show that IFT-A subunits IFT-139 and IFT-43 function redundantly to promote dynein-2 motility. These results reveal the molecular regulation of dynein-2 movement in sensory cilia.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Cilios/fisiología , Dineínas/metabolismo , Flagelos/fisiología , Células Receptoras Sensoriales/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/genética , Dineínas/genética , Genómica , Mutación , Subunidades de Proteína , Transporte de Proteínas , Homología de Secuencia
15.
J Cell Biol ; 208(6): 683-92, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25778918

RESUMEN

Cilium formation and maintenance require intraflagellar transport (IFT). Although much is known about kinesin-2-driven anterograde IFT, the composition and regulation of retrograde IFT-specific dynein remain elusive. Components of cytoplasmic dynein may participate in IFT; however, their essential roles in cell division preclude functional studies in postmitotic cilia. Here, we report that inducible expression of the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system in Caenorhabditis elegans generated conditional mutations in IFT motors and particles, recapitulating ciliary defects in their null mutants. Using this method to bypass the embryonic requirement, we show the following: the dynein intermediate chain, light chain LC8, and lissencephaly-1 regulate retrograde IFT; the dynein light intermediate chain functions in dendrites and indirectly contributes to ciliogenesis; and the Tctex and Roadblock light chains are dispensable for cilium assembly. Furthermore, we demonstrate that these components undergo biphasic IFT with distinct transport frequencies and turnaround behaviors. Together, our results suggest that IFT-dynein and cytoplasmic dynein have unique compositions but also share components and regulatory mechanisms.


Asunto(s)
Dineínas Axonemales/genética , Caenorhabditis elegans/genética , Cilios/fisiología , Neuronas/ultraestructura , Animales , Dineínas Axonemales/metabolismo , Transporte Biológico , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Larva/citología , Larva/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutagénesis , Neuronas/metabolismo
16.
Dev Cell ; 30(5): 625-36, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25155554

RESUMEN

Conditional gene knockout animals are valuable tools for studying the mechanisms underlying cell and developmental biology. We developed a conditional knockout strategy by spatiotemporally manipulating the expression of an RNA-guided DNA endonuclease, CRISPR-Cas9, in Caenorhabditis elegans somatic cell lineages. We showed that this somatic CRISPR-Cas9 technology provides a quick and efficient approach to generate conditional knockouts in various cell types at different developmental stages. Furthermore, we demonstrated that this method outperforms our recently developed somatic TALEN technique and enables the one-step generation of multiple conditional knockouts. By combining these techniques with live-cell imaging, we showed that an essential embryonic gene, Coronin, which is associated with human neurobehavioral dysfunction, regulates actin organization and cell morphology during C. elegans postembryonic neuroblast migration and neuritogenesis. We propose that the somatic CRISPR-Cas9 platform is uniquely suited for conditional gene editing-based biomedical research.


Asunto(s)
Caenorhabditis elegans/embriología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Endonucleasas/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Microfilamentos/genética , Neurogénesis/fisiología , Neuronas/fisiología , Actinas/química , Animales , Linaje de la Célula , Movimiento Celular , Citoesqueleto/metabolismo , Técnicas de Inactivación de Genes , Ingeniería Genética , Proteínas de Choque Térmico , Mitosis , Mutación
17.
Methods ; 68(3): 389-96, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24780522

RESUMEN

The nematode Caenorhabditis elegans has been a powerful model system for biomedical research in the past decades, however, the efficient genetic tools are still demanding for gene knockout, knock-in or conditional gene mutations. Transcription activator-like effector nucleases (TALENs) that comprise a sequence-specific DNA-binding domain fused to a FokI nuclease domain facilitate the targeted genome editing in various cell types or organisms. Here we summarize the recent progresses and protocols using TALENs in C. elegans that generate gene mutations and knock-ins in the germ line and the conditional gene knockout in somatic tissues.


Asunto(s)
Caenorhabditis elegans/genética , Desoxirribonucleasas/genética , Marcación de Gen/métodos , Activación Transcripcional/genética , Animales , Técnicas de Inactivación de Genes , Genoma
18.
FEBS Lett ; 588(7): 1136-43, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-24589937

RESUMEN

Proneural genes control the generation of neuroblasts from the neuroepithelium, but their functions in neuroblast asymmetric division and migration remain elusive. Here, we identified Caenorhabditiselegans mutants of a proneural transcription factor (TF) lin-32, in which Q neuroblasts are produced. We showed that LIN-32 functions in parallel with a storkhead TF, HAM-1, to regulate Q neuroblast asymmetric division, and that Q neuroblast migration is inhibited in lin-32 alleles. Consistently, lin-32 is expressed throughout Q neuroblast lineage, suggesting that LIN-32 may promote different target gene expression. Our studies thus uncovered previously unknown functions of a proneural gene in neuroblast development.


Asunto(s)
División Celular Asimétrica , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Movimiento Celular , Neuronas/fisiología , Factores de Transcripción/genética , Alelos , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Tamaño de la Célula , Regulación del Desarrollo de la Expresión Génica , Microscopía Fluorescente , Imagen de Lapso de Tiempo , Factores de Transcripción/metabolismo
19.
Development ; 140(18): 3838-47, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23946438

RESUMEN

Neuroblasts generate neurons with different functions by asymmetric cell division, cell cycle exit and differentiation. The underlying transcriptional regulatory pathways remain elusive. Here, we performed genetic screens in C. elegans and identified three evolutionarily conserved transcription factors (TFs) essential for Q neuroblast lineage progression. Through live cell imaging and genetic analysis, we showed that the storkhead TF HAM-1 regulates spindle positioning and myosin polarization during asymmetric cell division and that the PAR-1-like kinase PIG-1 is a transcriptional regulatory target of HAM-1. The TEAD TF EGL-44, in a physical association with the zinc-finger TF EGL-46, instructs cell cycle exit after the terminal division. Finally, the Sox domain TF EGL-13 is necessary and sufficient to establish the correct neuronal fate. Genetic analysis further demonstrated that HAM-1, EGL-44/EGL-46 and EGL-13 form three transcriptional regulatory pathways. We have thus identified TFs that function at distinct developmental stages to ensure appropriate neuroblast lineage progression and suggest that their vertebrate homologs might similarly regulate neural development.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , Linaje de la Célula/genética , Redes Reguladoras de Genes/genética , Estadios del Ciclo de Vida/genética , Neuronas/citología , Transcripción Genética , Animales , División Celular Asimétrica/genética , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Polaridad Celular/genética , Secuencia Conservada , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto/genética , Mutación/genética , Miosinas/metabolismo , Neuronas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Huso Acromático/metabolismo , Factores de Transcripción/metabolismo
20.
Nat Biotechnol ; 31(10): 934-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23955274

RESUMEN

We have developed a method for the generation of conditional knockouts in Caenorhabditis elegans by expressing transcription activator-like effector nucleases (TALENs) in somatic cells. Using germline transformation with plasmids encoding TALENs under the control of an inducible or tissue-specific promoter, we observed effective gene modifications and resulting phenotypes in specific developmental stages and tissues. We further used this method to bypass the embryonic requirement of cor-1, which encodes the homolog of human severe combined immunodeficiency (SCID) protein coronin, and we determined its essential role in cell migration in larval Q-cell lineages. Our results show that TALENs expressed in the somatic cells of model organisms provide a versatile tool for functional genomics.


Asunto(s)
Caenorhabditis elegans/genética , Desoxirribonucleasas/metabolismo , Genoma de los Helmintos/genética , Edición de ARN/genética , Transactivadores/metabolismo , Animales , Secuencia de Bases , Caenorhabditis elegans/citología , Linaje de la Célula , Movimiento Celular , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/metabolismo , Mecanotransducción Celular , Datos de Secuencia Molecular , Mutación/genética , Neuronas/citología , Neuronas/metabolismo , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA