Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38243974

RESUMEN

OBJECTIVE: To investigate the effect of high blood glucose on the decline in the estimated glomerular filtration rate (eGFR) in the elderly. METHODS: We compared the decline in eGFR of diabetic and non-diabetic groups in the noninterventional state and analyzed the effect of hyperglycemia on the decline in eGFR among the elderly in a retrospective analysis of 1,223 cases of elderly people aged 65 years or older with a 4-year follow-up period. RESULTS: The prevalence of diabetes in the elderly increased significantly from 12.67% in 2017 to 16.68% in 2021. The rate of decline in eGFR in patients with diabetes was higher than in the population without diabetes, at 9.29% and 5.32%, respectively (both p <0.05). CONCLUSION: The results of this study revealed that the prevalence of diabetes in the elderly increased significantly, and there is a more rapid decrease in the eGFR levels in those with diabetes than those without diabetes.

2.
ACS Nano ; 17(5): 4933-4941, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36802505

RESUMEN

Electron beam lithography uses an accelerated electron beam to fabricate patterning on an electron-beam-sensitive resist but requires complex dry etching or lift-off processes to transfer the pattern to the substrate or film on the substrate. In this study, etching-free electron beam lithography is developed to directly write a pattern of various materials in all-water processes, achieving the desired semiconductor nanopatterns on a silicon wafer. Introduced sugars are copolymerized with metal ions-coordinated polyethylenimine under the action of electron beams. The all-water process and thermal treatment result in nanomaterials with satisfactory electronic properties, indicating that diverse on-chip semiconductors (e.g., metal oxides, sulfides, and nitrides) can be directly printed on-chip by an aqueous solution system. As a demonstration, zinc oxide patterns can be achieved with a line width of 18 nm and a mobility of 3.94 cm2 V-1 s-1. This etching-free electron beam lithography strategy provides an efficient alternative for micro/nanofabrication and chip manufacturing.

3.
BMC Microbiol ; 22(1): 105, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35421921

RESUMEN

BACKGROUND: State-of-the-art renewal has indicated the improvement of diagnostics of patients with metabolic associated fatty liver disease (MAFLD) and/or type II diabetes mellitus (T2DM) by dissecting the clinical characteristics as well as genomic analysis. However, the deficiency of the characterization of microbial and metabolite signatures largely impedes the symptomatic treatment. METHODS: For the purpose, we retrospectively analyzed the clinical data of 20 patients with MAFLD (short for "M"), 20 cases with MAFLD and T2DM (short for "MD"), together with 19 healthy donors (short for "Ctr"). Microbial and metabolite analyses were further conducted to explore the similarities and differences among the aforementioned populations based on feces and blood samples, respectively. RESULTS: Compared with those in the Ctr group, patients with M or MD revealed multifaceted similarities (e.g., Age, ALP, LDL, BUN) and distinctions in clinical indicators of liver (e.g., BMI, ALT, PCHE, CAP). With the aid of microbial and metabolite analyses as well as bioinformatic analyses, we found that the characteristics of gut microbiota (e.g., abundance, hierarchical clustering, cladogram, species) and lipid metabolism (e.g., metabolite, correlation coefficient and scatter plot) were distinct among the indicated groups. CONCLUSIONS: The patients with MD revealed multifaceted similarities and distinctions in characteristics of microbiome and metabolites with those in the M and HD groups, and in particular, the significantly expressed microbes (e.g., Elusimicrobiota, Berkelbacteria, Cyanobacteria, Peregrinibacteria) and lipid metabolites (e.g., Lipid-Q-P-0765, Lipid-Q-P-0216, Lipid-Q-P-0034, Lipid-Q-P-0800), which would collectively benefit the clinical diagnosis of MAFLD and T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Bacterias/genética , Diabetes Mellitus Tipo 2/complicaciones , Microbioma Gastrointestinal/genética , Humanos , Lípidos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estudios Retrospectivos
4.
Angew Chem Int Ed Engl ; 60(47): 25020-25027, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34534391

RESUMEN

Adding ferromagnetism into semiconductors attracts much attentions due to its potential usage of magnetic spins in novel devices, such as spin field-effect transistors. However, it remains challenging to stabilize their ferromagnetism above room temperature. Here we introduce an atomic chemical-solution strategy to grow wafer-size NiO thin films with controllable thickness down to sub-nanometer scale (0.92 nm) for the first time. Surface lattice defects break the magnetic symmetry of NiO and produce surface ferromagnetic behaviors. Our sub-nanometric NiO thin film exhibits the highest reported room-temperature ferromagnetic behavior with a saturation magnetization of 157 emu/cc and coercivity of 418 Oe. Attributed to wafer size, the easily-transferred NiO thin film is further verified in a magnetoresistance device. Our work provides a sub-nanometric platform to produce wafer-size ferromagnetic NiO thin films as atomic layer magnetic units in future transparent magnetoelectric devices.

5.
Nanotechnology ; 32(2): 025606, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-32998117

RESUMEN

Recently, SnO2 is considered to be one of the most promising materials as electron transport layer in perovskite solar cells (PSCs). Low-temperature processed SnO2 films are crucial for SnO2-based PSCs and flexible devices. However, it is difficult to prepare stoichiometric SnO2 films by e-beam evaporation at low-temperature. Herein, SnO2 films are fabricated by oxygen plasma activated e-beam evaporation technique at room-temperature. Oxygen plasma shows strong oxidation activity, which is essential to adjust the stoichiometry of SnO x in the evaporation process. The SnO2 films exhibit uniformity (R q  = 3.05 nm), high transmittance (T > 90%), high hall mobility (µ e  = 10.8 cm2 V -1 s-1) and good hydrophilic (water contact angle =19°). This work will promote the application of SnO2 films in PSCs and flexible devices.

6.
Nanotechnology ; 31(19): 195705, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31995522

RESUMEN

Cu2BaSn(S1-x Se x )4 has shown great prospects in the photoelectric field due to Earth-abundance, low toxicity, cost efficiency, direct bandgap, high absorption coefficient (>104 cm-1) and reduced anti-site disorder relative to Cu2ZnSn(S1-x Se x )4. A fully-tunable ratio of S/Se is the key to broaden the bandgap of Cu2BaSn(S1-x Se x )4. Here, we introduce a thionothiolic acid metathesis process to readily tune the stoichiometry of Cu2BaSn(S1-x Se x )4 films for the first time. Different stoichiometric Se/(S + Se) of Cu2BaSn(S1-x Se x )4 from zero to one can vary the bandgap range from 2 to 1.68 eV. The grain size of Cu2BaSn(S1-x Se x )4 films can be grown more than 10 µm. The optimized bandgap and high-quality growth of Cu2BaSn(S1-x Se x )4 films ensure the best power conversion efficiency of 2.01% for solution-processed Cu2BaSn(S1-x Se x )4 solar cells. This method provides an alternative solution-processed way for the synthesis of fully stoichiometric Cu2BaSn(S1-x Se x )4.

7.
Chem Commun (Camb) ; 55(96): 14530-14533, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31738364

RESUMEN

An aqueous solution approach, integrating atomic layer deposition and chemical vapor deposition, is proposed to grow a high-quality Sb2S3 thin film. The Sb2S3 thin film is uniform and dense with a bandgap of 1.78 eV. The photocurrent density of the Sb2S3 sensitized TiO2 array electrode is 40 µA cm-2, which is nearly 25 and 93 times than that of TiO2 and Sb2S3 photoanodes, respectively.

8.
ACS Appl Mater Interfaces ; 11(36): 33102-33108, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31385686

RESUMEN

p-Type compounds Cu2BaSnS4 (CBTS) are extremely attractive materials for photocathode applications because of their suitable conduction and valence bands, earth-abundant sources, and environmental friendly nature. Herein, an inexpensive and reproducible aqueous solution approach has been developed to synthesize CBTS films with single-crystalline grains as large as micron scale. Because of the large crystalline grains, the as-grown CBTS films show excellent carrier mobility (1.29 cm2/V·s). Greater than 4 mA·cm-2 photocurrent density has been obtained in a neutral solution for bare Mo/CBTS film photocathodes under 100 mW·cm-2 illumination at 0 V versus reversible hydrogen electrode.

9.
Cancer Biomark ; 21(2): 287-297, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29171986

RESUMEN

OBJECTIVE: To explore the correlation of PD-1/PD-L1 polymorphisms and their expressions with clinicopathologic features and prognosis of ovarian cancer. METHODS: A total of 164 patients with ovarian cancer were enrolled as case group and 170 healthy women as control group. We conducted quantitative reverse transcription-PCR (qRT-PCR) to determine PD-1/PD-L1 expressions in peripheral blood mononuclear cells (PBMCs). Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele-specific amplification were used to detect PD-1 rs2227982 C>T and PD-L1 rs4143815 C>G. RESULTS: PD-1 rs2227982 C>T and PD-L1 rs4143815 C>G polymorphisms increased the risk for ovarian cancer. PD-1 rs2227982 C>T was associated with FIGO stage and differentiation grade, while PD-L1 rs4143815 C>G was correlated with histological type and differentiation grade. Besides, PD-1/PD-L1 expressions were positively correlated in PBMCs of patients with ovarian cancer to be associated with differentiation grade. Compared with wild homozygous patients, PD-1/PD-L1 expressions were significantly decreased in PBMCs of ovarian cancer patients carried with the mutant genotypes of rs2227982 C>T and rs4143815 C>G. The PFS and OS in ovarian cancer patients with wild homozygous genotype of rs2227982 C>T and rs4143815 C>G were significantly higher than those with mutant genotypes, which were significantly lower in patients with low expressions of PD-1/PD-L1 than those with high expressions. Univariate COX regression analysis identified FIGO staging, differentiation grade, rs2227982 C>T, rs4143815 C>G and expressions of PD-1/PD-L1 as the prognostic factors, and multivariate COX regression analysis demonstrated that high FIGO stage and low expressions of PD-1/PD-L1 were independent risk factors for the prognosis of ovarian cancer. CONCLUSION: PD-1 rs2227982 C>T and PD-L1 rs4143815 C>G polymorphisms increased the risk of ovarian cancer, leading to a poor prognosis, associated with low expressions of PD-1 and PD-L1. While high PD-1 and PD-L1 expressions are indicators of a favorable prognosis in ovarian cancer.


Asunto(s)
Antígeno B7-H1/genética , Neoplasias Ováricas/genética , Receptor de Muerte Celular Programada 1/genética , Adulto , Anciano , Antígeno B7-H1/biosíntesis , Femenino , Predisposición Genética a la Enfermedad , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Polimorfismo de Nucleótido Simple , Pronóstico , Receptor de Muerte Celular Programada 1/biosíntesis , Análisis de Supervivencia
10.
Nanoscale ; 9(42): 16342-16348, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29051961

RESUMEN

Exploring low-cost and efficient electrocatalysts based on earth-abundant elements for the hydrogen evolution reaction (HER) is of great importance for the development of clean and renewable energy. In this work, we report a facile self-foaming strategy for synthesis of hierarchically interconnected nitrogen-doped carbon nanosheets (NCNS). The doping N species within the 3D interconnected carbon network affords rich active sites for the HER and facilitates fast charge transfer. As a result, the NCNS exhibit excellent catalytic activity with an onset potential of -65 mV, and a Tafel slope of 81 mV dec-1 with robust stability over 10 h in acidic media. Further analyses suggest that the graphitic N species in the NCNS contribute to their catalytic activity. Such a high catalytic performance makes the NCNS a promising metal-free HER electrocatalyst for practical hydrogen production.

11.
ACS Appl Mater Interfaces ; 9(2): 1602-1608, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-27996233

RESUMEN

Bandgap engineering of kesterite Cu2Zn(Sn, Ge)(S, Se)4 with well-controlled stoichiometric composition plays a critical role in sustainable inorganic photovoltaics. Herein, a cost-effective and reproducible aqueous solution-based polymer-assisted deposition approach is developed to grow p-type Cu2Zn(Sn, Ge)(S, Se)4 thin films with tunable bandgap. The bandgap of Cu2Zn(Sn, Ge)(S, Se)4 thin films can be tuned within the range 1.05-1.95 eV using the aqueous polymer-assisted deposition by accurately controlling the elemental compositions. One of the as-grown Cu2Zn(Sn, Ge)(S, Se)4 thin films exhibits a hall coefficient of +137 cm3/C. The resistivity, concentration and carrier mobility of the Cu2ZnSn(S, Se)4 thin film are 3.17 ohm·cm, 4.5 × 1016 cm-3, and 43 cm2/(V·S) at room temperature, respectively. Moreover, the Cu2ZnSn(S, Se)4 thin film when used as an active layer in a solar cell leads to a power conversion efficiency of 3.55%. The facile growth of Cu2Zn(Sn, Ge)(S, Se)4 thin films in an aqueous system, instead of organic solvents, provides great promise as an environmental-friendly platform to fabricate a variety of single/multi metal chalcogenides for the thin film industry and solution-processed photovoltaic devices.

12.
ACS Appl Mater Interfaces ; 9(1): 60-64, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28005323

RESUMEN

In this letter, we report a facile self-foaming strategy to synthesize Ni3C nanoparticles embedded in a porous carbon network (Ni3C@PCN) by rationally incorporating a nickel salt precursor into the carbon source. As a novel hydrogen evolution reaction (HER) catalyst, the Ni3C@PCN shows superior catalytic activity with an onset potential of -65 mV, an overpotential of 262 mV to achieve 50 mA cm-2 current density, a Tafel slope of 63.4 mV/dec, and durability over 12 h in acidic media. The excellent performance of the novel 3D composite material along with its low-cost merits is suggestive of great potential for scalable electrocatalytic H2 production.

13.
ACS Appl Mater Interfaces ; 9(3): 2295-2300, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28032749

RESUMEN

The underlayer plays an important role for organic-inorganic hybrid perovskite formation and charge transport in perovskite solar cells (PSCs). Here, we employ a classical organic small molecule, 5,6,11,12-tetraphenyltetracene (rubrene), as the underlayer of perovskite films to achieve 15.83% of power conversion efficiency with remarkable moisture tolerance exposed to the atmosphere. Experiments demonstrate rubrene hydrophobic underlayer not only drives the crystalline grain growth of high quality perovskite, but also contributes to the moisture tolerance of PSCs. Moreover, the matching energy level of the desirable underlayer is conductive to extracting holes and blocking electrons at anode in PSCs. This introduction of organic small molecule into PSCs provides alternative materials for interface optimization, as well as platform for flexible and wearable solar cells.

14.
Nanoscale Res Lett ; 11(1): 457, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27739054

RESUMEN

Due to the good photocatalytic activity, the TiO2@CNTs thin film is highly desirable to apply to the self-cleaning glass for green intelligent building. Here, the TiO2@CNTs thin film has been successfully achieved by polymer-assisted approach of an aqueous chemical solution method. The polymer, polyethylenimine, aims to combine the Ti4+ with CNTs for film formation of TiO2@CNTs. The resultant thin film was uniform, highly transparent, and super-hydrophilic. Owing to fast electron transport and effectively hindering electron-hole recombination, the TiO2@CNTs thin film has nearly twofold photocatalytic performance than pure TiO2. The TiO2@CNTs thin films show a good application for self-cleaning glasses.

15.
Sci Rep ; 6: 26390, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27381661

RESUMEN

Polymer-assisted deposition method has been used to fabricate self-assembled epitaxial La0.67Ca0.33MnO3:NiO and La0.67Ca0.33MnO3:Co3O4 films on LaAlO3 substrates. Compared to pulsed-laser deposition method, polymer-assisted deposition provides a simpler and lower-cost approach to self-assembled composite films with enhanced low-field magnetoresistance effect. After the addition of NiO or Co3O4, triangular NiO and tetrahedral Co3O4 nanoparticles remain on the surface of La0.67Ca0.33MnO3 films. This results in a dramatic increase in resistivity of the films from 0.0061 Ω•cm to 0.59 Ω•cm and 1.07 Ω•cm, and a decrease in metal-insulator transition temperature from 270 K to 180 K and 172 K by the addition of 10%-NiO and 10%-Co3O4, respectively. Accordingly, the maximum absolute magnetoresistance value is improved from -44.6% to -59.1% and -52.7% by the addition of 10%-NiO and 10%-Co3O4, respectively. The enhanced low-field magnetoresistance property is ascribed to the introduced insulating phase at the grain boundaries. The magnetism is found to be more suppressed for the La0.67Ca0.33MnO3:Co3O4 composite films than the La0.67Ca0.33MnO3:NiO films, which can be attributed to the antiferromagnetic properties of the Co3O4 phase. The solution-processed composite films show enhanced low-field magnetoresistance effect which are crucial in practical applications. We expect our polymer-assisted deposited films paving the pathway in the field of hole-doped perovskites with their intrinsic colossal magnetoresistance.

16.
Nanoscale Res Lett ; 11(1): 27, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26781285

RESUMEN

Considering the environment protection, "green" materials are increasingly explored for photovoltaics. Here, we developed a kind of quantum dots solar cell based on nitrogen-doped carbon dots. The nitrogen-doped carbon dots were prepared by direct pyrolysis of citric acid and ammonia. The nitrogen-doped carbon dots' excitonic absorption depends on the N-doping content in the carbon dots. The N-doping can be readily modified by the mass ratio of reactants. The constructed "green" nitrogen-doped carbon dots solar cell achieves the best power conversion efficiency of 0.79 % under AM 1.5 G one full sun illumination, which is the highest efficiency for carbon dot-based solar cells.

17.
Sci Adv ; 2(11): e1601574, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28138535

RESUMEN

Large-area graphene thin films are prized in flexible and transparent devices. We report on a type of glassy graphene that is in an intermediate state between glassy carbon and graphene and that has high crystallinity but curly lattice planes. A polymer-assisted approach is introduced to grow an ultra-smooth (roughness, <0.7 nm) glassy graphene thin film at the inch scale. Owing to the advantages inherited by the glassy graphene thin film from graphene and glassy carbon, the glassy graphene thin film exhibits conductivity, transparency, and flexibility comparable to those of graphene, as well as glassy carbon-like mechanical and chemical stability. Moreover, glassy graphene-based circuits are fabricated using a laser direct writing approach. The circuits are transferred to flexible substrates and are shown to perform reliably. The glassy graphene thin film should stimulate the application of flexible transparent conductive materials in integrated circuits.

18.
ACS Appl Mater Interfaces ; 7(33): 18218-24, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25535801

RESUMEN

In this study, we report the growth of molybdenum oxide (MoOx) film by polymer-assisted deposition (PAD), an environmentally friendly strategy in an aqueous system. The MoOx film has good crystal quality and is dense and smooth. The transparency of the film is >95% in the wavelength range of 300-900 nm. The device based on P3HT:PCBM absorber material was fabricated. The solar cell with PAD-MoOx as an anode interfacial layer exhibits great performance, even better than that of a solar cell with PEDOT: PSS or evaporated MoOx as an anode interfacial layer. More importantly, the solar cells based on the growth of MoOx have a longer term stability than that of solar cells based on PEDOT: PSS. These results demonstrate the aqueous PAD technology provides an alternative strategy not only for the thin films' growth of applied materials but also for the solution processing for the low-cost fabrication of future materials to be applied in the field of solar cells.

19.
Chem Commun (Camb) ; 50(15): 1854-6, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24402170

RESUMEN

Transparent p-type nickel oxide (NiO) thin films have been epitaxially grown on (0001) Al2O3 substrates by a chemical solution method of polymer-assisted deposition for the first time. The films have a high optical transparency of above 95% in the wavelength range of 350-900 nm.

20.
Nanotechnology ; 25(1): 014017, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24334297

RESUMEN

SiC-Al2O3 hetero-structural nanofibers have been synthesized by the chemical solution approach at 200 ° C. The diameters of nanofibers are in the range of 60-100 nm while the lengths are from tens of micrometers to hundreds of micrometers. The microstructural analysis shows that the fibers possess a like-epitaxial relationship between (104) of hexagonal Al2O3 and (111) of cubic SiC. Additionally, the optical investigation of the nanofibers suggests there are some defects in the low annealing temperature synthesized SiC-Al2O3 nanofibers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...