Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(11): 10918-10924, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37191338

RESUMEN

Due to the peculiar structured light field with spatially variant polarizations on the same wavefront, vector beams (VBs) have sparked research enthusiasm in developing advanced super-resolution imaging and optical communications techniques. A compact VB nanolaser is intriguing for VB applications in miniaturized photonic integrated circuits. However, determined by the diffraction limit of light, it is a challenge to realize a VB nanolaser in the subwavelength scale because the VB lasing modes should have laterally structured distributions. Here, we demonstrate a VB nanolaser made from a 300 nm thick InGaAs/GaAs nanowire (NW). To select the high-order VB lasing mode, a standing NW as-grown from the selective-area-epitaxial (SAE) growth process is utilized, which has a bottom donut-shaped interface with the silicon oxide growth substrate. With this donut-shaped interface as one of the reflective mirrors of the nanolaser cavity, the VB lasing mode has the lowest threshold. Experimentally, a single-mode VB lasing mode with a donut-shaped amplitude and azimuthally cylindrical polarization distribution is obtained. Together with the high yield and uniformity of the SAE-grown NWs, our work provides a straightforward and scalable path toward cost-effective co-integration of VB nanolasers on potential photonic integrated circuits.

2.
Nano Lett ; 22(24): 9920-9927, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36516353

RESUMEN

We report a simple and facile integration strategy of a laser source in passive photonic integrated circuits (PICs) by deterministically embedding semiconductor nanowires (NWs) in waveguides. InP NWs laid on a SiN slab are buried by a polymer layer which also acts as an electron-beam resist. With electron-beam lithography, hybrid polymer-SiN waveguides are formed with precisely embedded NWs. The lasing behavior of the waveguide-embedded NWs is confirmed, and more importantly, the NW lasing mode couples into the hybrid waveguide and forms an in-plane guiding mode. Multiple waveguide-embedded NW lasers are further integrated in complex photonic structures to illustrate that the waveguiding mode supplied by the NW lasers could be manipulated for on-chip signal processing, including power splitting and wavelength-division multiplexing. This integration strategy of an on-chip laser is applicable to other PIC platforms, such as silicon and lithium niobate, and the top cladding layer could be changed by depositing SiN or SiO2, promising its CMOS compatibility.

3.
ACS Nano ; 16(12): 20946-20955, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36413764

RESUMEN

Two-dimensional (2D) materials, featuring distinctive electronic and optical properties and dangling-bond-free surfaces, are promising for developing high-performance on-chip photodetectors in photonic integrated circuits. However, most of the previously reported devices operating in the photoconductive mode suffer from a high dark current or a low responsivity. Here, we demonstrate a MoTe2 p-i-n homojunction fabricated directly on a silicon photonic crystal (PC) waveguide, which enables on-chip photodetection with ultralow dark current, high responsivity, and fast response speed. The adopted silicon PC waveguide is electrically split into two individual back gates to selectively dope the top regions of the MoTe2 channel in p- or n-types. High-quality reconfigurable MoTe2 (p-i-n, n-i-p, n-i-n, p-i-p) homojunctions are realized successfully, presenting rectification behaviors with ideality factors approaching 1.0 and ultralow dark currents less than 90 pA. Waveguide-assisted MoTe2 absorption promises a sensitive photodetection in the telecommunication O-band from 1260 to 1340 nm, though it is close to MoTe2's absorption band-edge. A competitive photoresponsivity of 0.4 A/W is realized with a light on/off current ratio exceeding 104 and a record-high normalized photocurrent-to-dark-current ratio of 106 mW-1. The ultrasmall capacitance of p-i-n homojunction and high carrier mobility of MoTe2 promise a high dynamic response bandwidth close to 34.0 GHz. The proposed device geometry has the advantages of employing a silicon PC waveguide as the back gates to build a 2D material p-i-n homojunction directly and simultaneously to enhance light-2D material interaction. It provides a potential pathway to develop 2D material-based photodetectors, laser diodes, and electro-optic modulators on silicon photonic chips.

4.
Light Sci Appl ; 11(1): 120, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487898

RESUMEN

Semiconductor nanowires (NWs) could simultaneously provide gain medium and optical cavity for performing nanoscale lasers with easy integration, ultracompact footprint, and low energy consumption. Here, we report III-V semiconductor NW lasers can also be used for self-frequency conversion to extend their output wavelengths, as a result of their non-centrosymmetric crystal structure and strongly localized optical field in the NWs. From a GaAs/In0.16Ga0.84As core/shell NW lasing at 1016 nm, an extra visible laser output at 508 nm is obtained via the process of second-harmonic generation, as confirmed by the far-field polarization dependence measurements and numerical modeling. From another NW laser with a larger diameter which supports multiple fundamental lasing wavelengths, multiple self-frequency-conversion lasing modes are observed due to second-harmonic generation and sum-frequency generation. The demonstrated self-frequency conversion of NW lasers opens an avenue for extending the working wavelengths of nanoscale lasers, even to the deep ultraviolet and THz range.

5.
ACS Nano ; 15(5): 9126-9133, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33970600

RESUMEN

We present single-mode nanowire (NW) lasers with an ultralow threshold in the near-infrared spectral range. To ensure the single-mode operation, the NW diameter and length are reduced specifically to minimize the longitudinal and transverse modes of the NW cavity. Increased optical losses and reduced gain volume by the dimension reduction are compensated by an excellent NW morphology and InGaAs/GaAs multiquantum disks. At 5 K, a threshold low as 1.6 µJ/cm2 per pulse is achieved with a resulting quality factor exceeding 6400. By further passivating the NW with an AlGaAs shell to suppress surface nonradiative recombination, single-mode lasing operation is obtained with a threshold of only 48 µJ/cm2 per pulse at room temperature with a high characteristic temperature of 223 K and power output of ∼0.9 µW. These single-mode, ultralow threshold, high power output NW lasers are promising for the development of near-infrared nanoscale coherent light sources for integrated photonic circuits, sensing, and spectroscopy.

6.
Opt Lett ; 46(4): 733-736, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33577501

RESUMEN

We report the achievement of continuous-wave (CW)-pumped second-harmonic generation (SHG) and sum frequency generation (SFG) in a layered indium selenide (InSe)-integrated microfiber. As a result of the strong interaction between the InSe nanosheets and the evanescent field, the second-order nonlinear processes are greatly enhanced in the InSe-integrated microfiber pumped by a few milliwatt CW lasers. The experimental results reveal that the intensities of SHG and SFG are quadratic and linear dependencies with the incident pump power, respectively, which is consistent with theoretical predictions. Additionally, the SHG intensity is strongly polarization-dependent on the nonaxisymmetrical distribution of the InSe nanosheets around the microfiber, providing the possibility of the SHG-polarized manipulation. The proposed device has the potential to be integrable into all-fiber systems for nonlinear applications.

7.
Light Sci Appl ; 9: 63, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32337027

RESUMEN

The centrosymmetric nature of silica fibre precludes the realisation of second-order nonlinear processes in optical fibre systems. Recently, the integration of 2D materials with optical fibres has opened up a great opportunity to develop all-fibre active devices. Here, we demonstrate high-efficiency second-order nonlinear frequency conversions in an optical microfibre assisted with few-layer gallium selenide (GaSe) nanoflakes. Attributed to the strong evanescent field of the microfibre and ultrahigh second-order nonlinearity of the GaSe nanoflakes, second harmonic generation (SHG) and sum-frequency generation (SFG) are effectively achieved with only sub-milliwatt continuous-wave (CW) lasers in the wavelength range of 1500-1620 nm, covering the C and L telecom bands. The SHG intensity from the microfibre is enhanced by more than four orders of magnitude with the assistance of the GaSe nanoflakes on fibre nonlinear processes. Moreover, in the SFG process, the intensity transfer between different frequencies can be effectively manipulated by changing the wavelengths and powers of two pump lasers. The realised strong second-order nonlinearity in the GaSe-integrated microfibre might expand the applications of all-fibre devices in all-optical signal processing and new light source generation at awkward wavelengths.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...