Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200005, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280565

RESUMEN

A European consortium of 15 laboratories across nine nations have worked together under the EUROFusion Enabling Research grants for the past decade with three principle objectives. These are: (a) investigating obstacles to ignition on megaJoule-class laser facilities; (b) investigating novel alternative approaches to ignition, including basic studies for fast ignition (both electron and ion-driven), auxiliary heating, shock ignition, etc.; and (c) developing technologies that will be required in the future for a fusion reactor. A brief overview of these activities, presented here, along with new calculations relates the concept of auxiliary heating of inertial fusion targets, and provides possible future directions of research and development for the updated European Roadmap that is due at the end of 2020. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

2.
Phys Rev E ; 101(3-1): 033205, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32290020

RESUMEN

We present direct measurements of electron temperature variations within an inertially confined deuterium-tritium plasma caused by localized mix of higher-Z materials into the central hot spot. The data are derived from newly developed differentially filtered penumbral imaging of the bremsstrahlung continuum emission. Our analysis reveals distinct localized emitting features in the stagnated hot-spot plasma, and we infer spatial variations in the electron temperature: the mixed region is 660±130eV colder than the surrounding hot-spot plasma at 3.26±0.11keV. Our analysis of the energy flow shows that we measure approximately steady-state conditions where the radiative losses in the mix region are balanced by heat conduction from the surrounding hot deuterium-tritium plasma.

3.
Phys Rev E ; 98(2-1): 023203, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30253622

RESUMEN

Asymmetric implosion of inertial confinement fusion capsules is known, both experimentally and computationally, to reduce thermonuclear performance. This work shows that low-mode asymmetries degrade performance as a result of a decrease in the hydrodynamic disassembly time of the hot-spot core, which scales with the minimum dimension of the hot spot. The asymmetric shape of a hot spot results in decreased temperatures and areal densities and allows more alpha particles to escape, relative to an ideal spherical implosion, thus reducing alpha-energy deposition in the hot spot. Here, we extend previous ignition theory to include the hot-spot shape and quantify the effects of implosion asymmetry on both the ignition criterion and the capsule performance. The ignition criterion becomes more stringent with increasing deformation of the hot spot. The new theoretical results are validated by comparison with existing experimental data obtained at the National Ignition Facility. The shape effects on thermonuclear performance are relatively more noticeable for capsules having self-heating and high yields. The degradation of thermonuclear burn can be as high as 45% for shots with a yield lower than 2×10^{15} and less than 30% for shots with a higher yield.

4.
Phys Rev Lett ; 117(24): 245001, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-28009190

RESUMEN

The first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D_{2} and DT layer inertial confinement fusion (ICF) implosions that can access a low-to-moderate hot-spot convergence ratio (1230) DT ice layer implosions. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious effects of asymmetries. To date, these asymmetries prevented the achievement of ignition at the NIF and are the major cause of simulation-experiment disagreement. In the initial liquid layer experiments, high neutron yields were achieved with CRs of 12-17, and the hot-spot formation is well understood, demonstrated by a good agreement between the experimental data and the radiation hydrodynamic simulations. These initial experiments open a new NIF experimental capability that provides an opportunity to explore the relationship between hot-spot convergence ratio and the robustness of hot-spot formation during ICF implosions.

5.
Cell Death Dis ; 6: e1964, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26539911

RESUMEN

Novel therapeutic strategies are needed to overcome cancer recurrence, metastasis, and resistance to chemo- and radiotherapy. Cancer stem cells (CSCs) are major contributors to the malignant transformation of cells due to their capacity for self-renewal. Although various CSC markers have been identified in several types of tumors, they are primarily used as cancer-prediction markers and for the isolation of CSC populations. CD133, one of the best-characterized CSC markers in distinct solid tumor types, was shown to be correlated with CSC tumor-initiating capacity; however, the regulation of CD133 expression and its function in cancer are poorly understood. Here, we show that CD133 expression is negatively regulated by direct binding of the p53 tumor suppressor protein to a noncanonical p53-binding sequence in the CD133 promoter. Binding of p53 recruits Histone Deacetylase 1 (HDAC1) to the CD133 promoter and subsequently suppresses CD133 expression by reducing histone H3 acetylation. Furthermore, CD133 depletion suppresses tumor cell proliferation, colony formation, and the expression of core stemness transcription factors including NANOG, octamer-binding transcription factor 4 (OCT4), SOX2, and c-MYC. Critically, the anti-proliferative effects of p53 are antagonized by rescue of CD133 expression in a p53 overexpressing cell line, indicating that the tumor suppressive activity of p53 might be mediated by CD133 suppression. Taken together, our results suggest that p53-mediated transcriptional regulation of CD133 is a key underlying mechanism for controlling the growth and tumor-initiating capacity of CSCs and provide a novel perspective on targeting CSCs for cancer therapy.


Asunto(s)
Antígenos CD/genética , Glicoproteínas/genética , Células Madre Neoplásicas/fisiología , Péptidos/genética , Proteína p53 Supresora de Tumor/genética , Antígeno AC133 , Antígenos CD/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Glicoproteínas/metabolismo , Células HeLa , Humanos , Células Jurkat , Células MCF-7 , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Péptidos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
6.
Nat Commun ; 4: 1988, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23756359

RESUMEN

Laser-plasma accelerators of only a centimetre's length have produced nearly monoenergetic electron bunches with energy as high as 1 GeV. Scaling these compact accelerators to multi-gigaelectronvolt energy would open the prospect of building X-ray free-electron lasers and linear colliders hundreds of times smaller than conventional facilities, but the 1 GeV barrier has so far proven insurmountable. Here, by applying new petawatt laser technology, we produce electron bunches with a spectrum prominently peaked at 2 GeV with only a few per cent energy spread and unprecedented sub-milliradian divergence. Petawatt pulses inject ambient plasma electrons into the laser-driven accelerator at much lower density than was previously possible, thereby overcoming the principal physical barriers to multi-gigaelectronvolt acceleration: dephasing between laser-driven wake and accelerating electrons and laser pulse erosion. Simulations indicate that with improvements in the laser-pulse focus quality, acceleration to nearly 10 GeV should be possible with the available pulse energy.

7.
Phys Rev Lett ; 104(13): 134801, 2010 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-20481887

RESUMEN

Electron density bubbles--wake structures generated in plasma of density n(e) approximately 10(19) cm(-3) by the light pressure of intense ultrashort laser pulses--are shown to reshape weak copropagating probe pulses into optical "bullets." The bullets are reconstructed using frequency-domain interferometric techniques in order to visualize bubble formation. Bullets are confined in three dimensions to plasma-wavelength size, and exhibit higher intensity, broader spectrum and flatter temporal phase than surrounding probe light, evidence of their compression by the bubble. Bullets observed at 0.8 approximately < n(e) approximately < 1.2x10(19) cm(-3) provide the first observation of bubble formation below the electron capture threshold. At higher n(e), bullets appear with high shot-to-shot stability together with relativistic electrons that vary widely in spectrum, and help relate bubble formation to fast electron generation.

8.
Phys Rev Lett ; 103(13): 135004, 2009 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-19905519

RESUMEN

The blowout (or bubble) regime of laser wakefield acceleration is promising for generating monochromatic high-energy electron beams out of low-density plasmas. It is shown analytically and by particle-in-cell simulations that self-injection of the background plasma electrons into the quasistatic plasma bubble can be caused by slow temporal expansion of the bubble. Sufficient criteria for the electron trapping and bubble's expansion rate are derived using a semianalytic nonstationary Hamiltonian theory. It is further shown that the combination of bubble's expansion and contraction results in monoenergetic electron beams.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...