Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NMR Biomed ; : e5242, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164197

RESUMEN

This study aims to develop an ensemble learning (EL) method based on magnetic resonance (MR) radiomic features to preoperatively differentiate intracranial extraventricular ependymoma (IEE) from glioblastoma (GBM). This retrospective study enrolled patients with histopathologically confirmed IEE and GBM from June 2016 to June 2021. Radiomics features were extracted from T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) sequence images, and classification models were constructed using EL methods and logistic regression (LR). The efficiency of the models was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis. The combined EL model, based on clinical parameters and radiomic features from T1WI and T2WI images, demonstrated good discriminative ability, achieving an area under the receiver operating characteristics curve (AUC) of 0.96 (95% CI 0.94-0.98), a specificity of 0.84, an accuracy of 0.92, and a sensitivity of 0.95 in the training set, and an AUC of 0.89 (95% CI 0.83-0.94), a specificity of 0.83, an accuracy of 0.81, and a sensitivity of 0.74 in the validation set. The discriminative efficacy of the EL model was significantly higher than that of the LR model. Favorable calibration performance and clinical applicability for the EL model were observed. The EL model combining preoperative MR-based tumor radiomics and clinical data showed high accuracy and sensitivity in differentiating IEE from GBM preoperatively, which may potentially assist in clinical management of these brain tumors.

2.
Biodes Res ; 6: 0038, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919710

RESUMEN

Recently, there has been increasing interest in the use of bacteria for cancer therapy due to their ability to selectively target tumor sites and inhibit tumor growth. However, the complexity of the interaction between bacteria and tumor cells evokes unpredictable therapeutic risk, which induces inflammation, stimulates the up-regulation of cyclooxygenase II (COX-2) protein, and stimulates downstream antiapoptotic gene expression in the tumor microenvironment to reduce the antitumor efficacy of chemotherapy and immunotherapy. In this study, we encapsulated celecoxib (CXB), a specific COX-2 inhibitor, in liposomes anchored to the surface of Escherichia coli Nissle 1917 (ECN) through electrostatic absorption (C@ECN) to suppress ECN-induced COX-2 up-regulation and enhance the synergistic antitumor effect of doxorubicin (DOX). C@ECN improved the antitumor effect of DOX by restraining COX-2 expression. In addition, local T lymphocyte infiltration was induced by the ECN to enhance immunotherapy efficacy in the tumor microenvironment. Considering the biosafety of C@ECN, a hypoxia-induced lysis circuit, pGEX-Pvhb-Lysis, was introduced into the ECN to limit the number of ECNs in vivo. Our results indicate that this system has the potential to enhance the synergistic effect of ECN with chemical drugs to inhibit tumor progression in medical oncology.

4.
J Imaging Inform Med ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806952

RESUMEN

Personalized management involving heart failure (HF) etiology is crucial for better prognoses. We aim to evaluate the utility of a radiomics nomogram based on gated myocardial perfusion imaging (GMPI) in distinguishing ischemic from non-ischemic origins of HF. A total of 172 heart failure patients with reduced left ventricular ejection fraction (HFrEF) who underwent GMPI scan were divided into training (n = 122) and validation sets (n = 50) based on chronological order of scans. Radiomics features were extracted from the resting GMPI. Four machine learning algorithms were used to construct radiomics models, and the model with the best performances were selected to calculate the Radscore. A radiomics nomogram was constructed based on the Radscore and independent clinical factors. Finally, the model performance was validated using operating characteristic curves, calibration curve, decision curve analysis, integrated discrimination improvement values (IDI), and the net reclassification index (NRI). Three optimal radiomics features were used to build a radiomics model. Total perfusion deficit (TPD) was identified as the independent factors of conventional GMPI metrics for building the GMPI model. In the validation set, the radiomics nomogram integrating the Radscore, age, systolic blood pressure, and TPD significantly outperformed the GMPI model in distinguishing ischemic cardiomyopathy (ICM) from non-ischemic cardiomyopathy (NICM) (AUC 0.853 vs. 0.707, p = 0.038). IDI analysis indicated that the nomogram improved diagnostic accuracy by 28.3% compared to the GMPI model in the validation set. By combining radiomics signatures with clinical indicators, we developed a GMPI-based radiomics nomogram that helps to identify the ischemic etiology of HFrEF.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38642117

RESUMEN

The neurobiological mechanism of borderline personality disorder (BPD) in adolescents remains unclear. The study aimed to assess the alterations in neural activity within prefrontal cortex in adolescents with BPD and investigate the relationship of prefrontal activity with emotional regulation and cognitive function. This study enrolled 50 adolescents aged 12-17 years with BPD and 21 gender and age-matched healthy control (HC) participants. Study assessment for each participant included a brain resting-state functional MRI (rs-fMRI), clinical assessment questionnaires such as Borderline Personality Features Scale (BPFS), Difficulties in Emotion Regulation Scale (DERS), Ottawa Self-Injury Inventory and Childhood Trauma Questionnaire (CTQ) and cognitive testing with Stroop Color-Word Test (SCWT). Fractional amplitude of low-frequency fluctuations (fALFF) and seed-based functional connectivity (FC) were obtained from rs-fMRI analysis. Correlation analysis was also performed to evaluate the associations of the neuroimaging metrics such as fALFF and FC with clinical assessment questionnaire and cognitive testing scores. Adolescents with BPD showed increased fALFF values in the right inferior frontal gyrus and decreased activity in the left middle frontal gyrus as compared to the HC group (p < 0.05, cluster size ≥ 100, FWE correction). In adolescents with BPD, increased fALFF in the right inferior frontal gyrus was related to the BPFS (emotional dysregulation), DERS-F (lacking of emotional regulation strategies) and Ottawa Self-Injury Inventory-4 C scores (internal emotional regulation function of self-injurious behavior). The reduced fALFF in the left middle frontal gyrus was associated with the SCWT-A (reading characters) and the SCWT-B (reading color) scores. Additionally, the fALFF values in the left middle frontal gyrus and the right inferior frontal gyrus were related to the CTQ-D (emotional neglect) (p < 0.05). The left middle frontal gyrus exhibited increased FC with the right hippocampus, left inferior temporal gyrus and right inferior frontal gyrus (voxel p < 0.001, cluster p < 0.05, FWE correction). The increased FC between the left middle frontal gyrus and the right hippocampus was related to the SCWT-C (cognitive flexibility) score. We observed diverging changes in intrinsic brain activity in prefrontal cortex, and neural compensatory changes to maintain function in adolescents with BPD. In addition, decreased neural function was closely associated with emotional dysregulation, while increased neural function as indicated by brain activity and FC was associated with cognitive dysfunction. These results indicated that alterations of intrinsic brain activity may be one of the underlying neurobiological markers for clinical symptoms in adolescents with BPD.

6.
BMC Cancer ; 24(1): 458, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609917

RESUMEN

BACKGROUND: The identification of survival predictors is crucial for early intervention to improve outcome in acute myeloid leukemia (AML). This study aim to identify chest computed tomography (CT)-derived features to predict prognosis for acute myeloid leukemia (AML). METHODS: 952 patients with pathologically-confirmed AML were retrospectively enrolled between 2010 and 2020. CT-derived features (including body composition and subcutaneous fat features), were obtained from the initial chest CT images and were used to build models to predict the prognosis. A CT-derived MSF nomogram was constructed using multivariate Cox regression incorporating CT-based features. The performance of the prediction models was assessed with discrimination, calibration, decision curves and improvements. RESULTS: Three CT-derived features, including myosarcopenia, spleen_CTV, and SF_CTV (MSF) were identified as the independent predictors for prognosis in AML (P < 0.01). A CT-MSF nomogram showed a performance with AUCs of 0.717, 0.794, 0.796 and 0.792 for predicting the 1-, 2-, 3-, and 5-year overall survival (OS) probabilities in the validation cohort, which were significantly higher than the ELN risk model. Moreover, a new MSN stratification system (MSF nomogram plus ELN risk model) could stratify patients into new high, intermediate and low risk group. Patients with high MSN risk may benefit from intensive treatment (P = 0.0011). CONCLUSIONS: In summary, the chest CT-MSF nomogram, integrating myosarcopenia, spleen_CTV, and SF_CTV features, could be used to predict prognosis of AML.


Asunto(s)
Leucemia Mieloide Aguda , Nomogramas , Humanos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Área Bajo la Curva , Leucemia Mieloide Aguda/diagnóstico por imagen
7.
Quant Imaging Med Surg ; 14(3): 2255-2266, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38545063

RESUMEN

Background: Intracranial extraventricular ependymoma (IEE) and glioblastoma (GBM) may have similar imaging findings but different prognosis. This study aimed to develop and validate a nomogram based on magnetic resonance imaging (MRI) Visually AcceSAble Rembrandt Images (VASARI) features for preoperatively differentiating IEE from GBM. Methods: The clinical data and the MRI-VASARI features of patients with confirmed IEE (n=114) and confirmed GBM (n=258) in a multicenter cohort were retrospectively analyzed. Predictive models for differentiating IEE from GBM were built using a multivariate logistic regression method. A nomogram was generated and the performance of the nomogram was assessed with respect to its calibration, discrimination, and clinical usefulness. Results: The predictors identified in this study consisted of six VASARI features and four clinical features. Compared with the individual models, the combined model incorporating clinical and VASARI features had the highest area under the curve (AUC) value [training set: 0.99, 95% confidence interval (CI): 0.98-1.00; validation set: 0.97, 95% CI: 0.94-1.00] in comparison to the clinical model. The nomogram was well calibrated with significant clinical benefit according to the calibration curve and decision curve analyses. Conclusions: The nomogram combining clinical and MRI-VASARI characteristics was robust for differentiating IEE from GBM preoperatively and may potentially assist in diagnosis and treatment of brain tumors.

8.
Bioresour Bioprocess ; 10(1): 60, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-38647813

RESUMEN

Infectious bursal disease (IBD) of chickens is an acute, high-contact, lytic infectious disease caused by infectious bursal disease virus (IBDV). The attenuated inactivated vaccine produced by DF-1 cells is an effective control method, but the epidemic protection demands from the world poultry industry remain unfulfilled. To improve the IBDV vaccine production capacity and reduce the economic losses caused by IBDV in chicken, cellular metabolic engineering is performed on host cells. In this study, when analyzing the metabolomic after IBDV infection of DF-1 cells and the exogenous addition of reduced glutathione (GSH), we found that glutathione metabolism had an important role in the propagation of IBDV in DF-1 cells, and the glutathione synthetase gene (gss) could be a limiting regulator in glutathione metabolism. Therefore, three stable recombinant cell lines GSS-L, GSS-M, and GSS-H (gss gene overexpression with low, medium, and high mRNA levels) were screened. We found that the recombinant GSS-M cell line had the optimal regulatory effect with a 7.19 ± 0.93-fold increase in IBDV titer. We performed oxidative stress and redox status analysis on different recombinant cell lines, and found that the overexpression of gss gene significantly enhanced the ability of host cells to resist oxidative stress caused by IBDV infection. This study established a high-efficiency DF-1 cells system for IBDV vaccine production by regulating glutathione metabolism, and underscored the importance of moderate gene expression regulation on the virus reproduction providing a way for rational and precise cell engineering.

9.
Bioresour Bioprocess ; 8(1): 74, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38650273

RESUMEN

The scale-up of animal cell cultivation is important but remains complex and challenging. In the present study, we propose a novel scale-up strategy for baby hamster Syrian kidney-21 (BHK-21) cell cultivation based on similar hydrodynamic environments. The hydrodynamic characteristics of the different scale bioreactors were determined by computational fluid dynamics (CFD) and further correlated with the agitation speed. The optimal hydrodynamic environment for cell cultivation and vaccine production was determined from the cultivation experiments of BHK-21 cells in 5-L laboratory-scale bioreactors equipped with different impellers at various agitation speeds. BHK-21 cell cultivation was scaled up from 5-L to 42-, 350-, and 1000-L bioreactors by adjusting the agitation speed to make the hydrodynamic features similar to those in the 5-L bioreactor, especially for the shear rate in the impeller zone (γimp) and energy dissipation rate in the tank bulk zone (εtan). The maximum cell density and cell aggregation rate in these scaled-up bioreactors were in the range of 4.6 × 106 ~ 4.8 × 106 cells/mL and 16 ~ 20%, which are comparable to or even better than those observed in the 5-L bioreactor (maximum cell density 4.8 × 106 cells/mL, cell aggregation rate 21%). The maximum virus titer of 108.0 LD50/mL achieved in the 1000-L bioreactor was close to 108.3 LD50/mL that obtained in the 5-L bioreactor. Hence, the scale-up strategy proposed in this study is feasible and can efficiently facilitate the scale-up processes of animal cell cultivation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA