Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 544
Filtrar
1.
Oncologist ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821519

RESUMEN

BACKGROUND: Pegylated liposomal doxorubicin (PLD) is a liposome-encapsulated form of doxorubicin with equivalent efficacy and less cardiotoxicity. This phase 2 study evaluated the efficacy and safety of the PLD-containing CHOP regimen in newly diagnosed patients with aggressive peripheral T-cell lymphomas (PTCL). METHODS: Patients received PLD, cyclophosphamide, vincristine/vindesine, plus prednisone every 3 weeks for up to 6 cycles. The primary endpoint was the objective response rate at the end of treatment (EOT). RESULTS: From September 2015 to January 2017, 40 patients were treated. At the EOT, objective response was achieved by 82.5% of patients, with 62.5% complete response. As of the cutoff date (September 26, 2023), median progression-free survival (mPFS) and overall survival (mOS) were not reached (NR). The 2-year, 5-year, and 8-year PFS rates were 55.1%, 52.0%, and 52.0%. OS rate was 80.0% at 2 years, 62.5% at 5 years, and 54.3% at 8 years. Patients with progression of disease within 24 months (POD24) had worse prognosis than those without POD24, regarding mOS (41.2 months vs NR), 5-year OS (33.3% vs 94.4%), and 8-year OS (13.3% vs 94.4%). Common grade 3-4 adverse events were neutropenia (87.5%), leukopenia (80.0%), anemia (17.5%), and pneumonitis (17.5%). CONCLUSION: This combination had long-term benefits and manageable tolerability, particularly with less cardiotoxicity, for aggressive PTCL, which might provide a favorable benefit-risk balance. CLINICALTRIALS.GOV IDENTIFIER: Chinese Clinical Trial Registry, ChiCTR2100054588; IRB Approved: Ethics committee of Fudan University Shanghai Cancer Center (Date 2015.8.31/No. 1508151-13.

2.
Front Pharmacol ; 15: 1390615, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698811

RESUMEN

Background: Previous studies have shown that MCM3 plays a key role in initiating DNA replication. However, the mechanism of MCM3 function in most cancers is still unknown. The aim of our study was to explore the expression, prognostic role, and immunological characteristics of MCM3 across cancers. Methods: We explored the expression pattern of MCM3 across cancers. We subsequently explored the prognostic value of MCM3 expression by using univariate Cox regression analysis. Spearman correlation analysis was performed to determine the correlations between MCM3 and immune-related characteristics, mismatching repair (MMR) signatures, RNA modulator genes, cancer stemness, programmed cell death (PCD) gene expression, tumour mutation burden (TMB), microsatellite instability (MSI), and neoantigen levels. The role of MCM3 in predicting the response to immune checkpoint blockade (ICB) therapy was further evaluated in four immunotherapy cohorts. Single-cell data from CancerSEA were analysed to assess the biological functions associated with MCM3 in 14 cancers. The clinical correlation and independent prognostic significance of MCM3 were further analysed in the TCGA and CGGA lower-grade glioma (LGG) cohorts, and a prognostic nomogram was constructed. Immunohistochemistry in a clinical cohort was utilized to validate the prognostic utility of MCM3 expression in LGG. Results: MCM3 expression was upregulated in most tumours and strongly associated with patient outcomes in many cancers. Correlation analyses demonstrated that MCM3 expression was closely linked to immune cell infiltration, immune checkpoints, MMR genes, RNA modulator genes, cancer stemness, PCD genes and the TMB in most tumours. There was an obvious difference in outcomes between patients with high MCM3 expression and those with low MCM3 expression in the 4 ICB treatment cohorts. Single-cell analysis indicated that MCM3 was mainly linked to the cell cycle, DNA damage and DNA repair. The expression of MCM3 was associated with the clinical features of LGG patients and was an independent prognostic indicator. Finally, the prognostic significance of MCM3 in LGG was validated in a clinical cohort. Conclusion: Our study suggested that MCM3 can be used as a potential prognostic marker for cancers and may be associated with tumour immunity. In addition, MCM3 is a promising predictor of immunotherapy responses.

3.
Front Endocrinol (Lausanne) ; 15: 1336402, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742197

RESUMEN

Diabetic kidney disease (DKD), a significant complication associated with diabetes mellitus, presents limited treatment options. The progression of DKD is marked by substantial lipid disturbances, including alterations in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD, potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism reprogramming, and immune modulation of gut microbiota (thus impacting the liver-kidney axis). The elucidation of these mechanisms opens new potential therapeutic pathways for DKD management. This research explores the link between lipid metabolism disruptions and DKD onset.


Asunto(s)
Nefropatías Diabéticas , Metabolismo de los Lípidos , Humanos , Nefropatías Diabéticas/metabolismo , Animales , Trastornos del Metabolismo de los Lípidos/metabolismo , Trastornos del Metabolismo de los Lípidos/complicaciones , Microbioma Gastrointestinal
4.
Heliyon ; 10(9): e29896, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707273

RESUMEN

In this study, ionic liquids (ILs) were used as organic modifiers by introducing montmorillonite nanolayers containing potential C and N active sites between the montmorillonite nanolayers. Organically modified montmorillonite (ILs-Mt-p) was further prepared by high-temperature pyrolysis under N2 and used for the removal of ofloxacin (OFL) by activated peroxymonosulfate (PMS). Combined with XPS and other characterization analyses, it was found that the catalyst materials prepared from different organic modifiers had similar surface functional groups and graphitized structures, but contained differences in the types and numbers of C and N active sites. The catalyst (3CPC-Mt-p) obtained after pyrolysis of montmorillonite modified with cetylpyridinium chloride (CPC) had optimal catalytic performance, in which graphitic C, graphitic N, and carbonyl group (C[bond, double bond]O) could synergistically promote the activation of PMS by electron transfer, and 77.3 % of OFL could be removed within 60 min. The effects of OFL concentration, initial pH, and anions on the effects of OFL removal by the 3CPC-Mt-p/PMS system were further investigated. Satisfactory degradation results were obtained over a wide pH range. Cl- promoted the system to degrade OFL, while the presence of SO42-, H2PO4- and HA showed some inhibition, but overall the 3CPC-Mt-p catalysts had a strong anti-interference ability, showing good application prospects. The quenching experiments and EPR tests showed that O2-- and 1O2 in the 3CPC-Mt-p/PMS system were the main reactive oxygen species for the degradation of OFL, and •OH was also involved in the reaction. This study provides ideas for the construction and modulation of active sites in mineral materials such as montmorillonite and broadens the application of montmorillonite composite catalysts in advanced oxidation processes for the treatment of antibiotic wastewater.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38659261

RESUMEN

BACKGROUND: Honokiol is a natural polyphenolic compound extracted from Magnolia officinali, which is commonly used material in Chinese herbal medicine, has a variety of biological functions, including anti-tumor, anti-oxidant, anti-inflammation, anti-microbial and anti-allergy. Although honokiol has numerous beneficial effects on human diseases, the underlying mechanisms of tumor metastasis are still unclear. Previously, we reported that honokiol suppresses thyroid cancer cell proliferation with cytotoxicity through cell cycle arrest, apoptosis, and dysregulation of intracellular hemostasis. Herein, we hypothesized that the antioxidant effect of honokiol might play a critical role in thyroid cancer cell proliferation and migration. METHODS: The cell viability assays, cellular reactive oxygen species (ROS) activity, cell migration, and immunoblotting were performed after cells were treated with honokiol. RESULTS: Based on this hypothesis, we first demonstrated that honokiol suppresses cell proliferation in two human anaplastic thyroid carcinoma (ATC) cell lines, KMH-2 and ASH-3, within a dosage- and time-dependent manner by cell counting kit-8 (CCK-8) assay. Next, we examined that honokiol induced ROS activation and could be suppressed by pre-treated with an antioxidant agent, N-acetyl-l-cysteine (NAC). Furthermore, the honokiol suppressed cell proliferation can be rescued by pre-treated with NAC. Finally, we demonstrated that honokiol inhibited ATC cell migration by modulating epithelial-mesenchymal transition (EMT)-related markers by Western blotting. CONCLUSION: Taken together, we provided the potential mechanism for treating ATC cells with honokiol, which significantly suppresses tumor proliferation and inhibits tumor metastasis in vitro through reactive oxygen species (ROS) induction.

6.
J Clin Invest ; 134(11)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573824

RESUMEN

Individuals with clonal hematopoiesis of indeterminate potential (CHIP) are at increased risk of aging related health conditions and all-cause mortality, but whether CHIP affects risk of infection is much less clear. Using UK Biobank data, we revealed a positive association between CHIP and incident pneumonia in 438,421 individuals. We show that inflammation enhanced pneumonia risk, as CHIP carriers with a hypomorphic IL6 receptor polymorphism were protected. To better characterize the pathways of susceptibility, we challenged hematopoietic Tet Methylcytosine Dioxygenase 2-knockout (Tet2-/-) and floxed control mice (Tet2fl/fl) with Streptococcus pneumoniae. As with human CHIP carriers, Tet2-/- mice had hematopoietic abnormalities resulting in the expansion of inflammatory monocytes and neutrophils in peripheral blood. Yet, these cells were insufficient in defending against S. pneumoniae and resulted in increased pathology, impaired bacterial clearance, and higher mortality in Tet2-/- mice. We delineated the transcriptional landscape of Tet2-/- neutrophils and found that, while inflammation-related pathways were upregulated in Tet2-/- neutrophils, migration and motility pathways were compromised. Using live-imaging techniques, we demonstrated impairments in motility, pathogen uptake, and neutrophil extracellular trap (NET) formation by Tet2-/- neutrophils. Collectively, we show that CHIP is a risk factor for bacterial pneumonia related to innate immune impairments.


Asunto(s)
Proteínas de Unión al ADN , Dioxigenasas , Inmunidad Innata , Ratones Noqueados , Neutrófilos , Proteínas Proto-Oncogénicas , Streptococcus pneumoniae , Animales , Dioxigenasas/genética , Neutrófilos/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Ratones , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Humanos , Streptococcus pneumoniae/inmunología , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/patología , Neumonía Bacteriana/genética , Neumonía Bacteriana/microbiología , Masculino , Femenino
7.
Cell Insight ; 3(3): 100163, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38572176

RESUMEN

Tuberculosis (TB) remains a prevalent global infectious disease caused by genetically closely related tubercle bacilli in Mycobacterium tuberculosis complex (MTBC). For a century, the Bacillus Calmette-Guérin (BCG) vaccine has been the primary preventive measure against TB. While it effectively protects against extrapulmonary forms of pediatric TB, it lacks consistent efficacy in providing protection against pulmonary TB in adults. Consequently, the exploration and development of novel TB vaccines, capable of providing broad protection to populations, have consistently constituted a prominent area of interest in medical research. This article presents a concise overview of the novel TB vaccines currently undergoing clinical trials, discussing their classification, protective efficacy, immunogenicity, advantages, and limitations. In vaccine development, the careful selection of antigens that can induce strong and diverse specific immune responses is essential. Therefore, we have summarized the molecular characteristics, biological function, immunogenicity, and relevant studies associated with the chosen antigens for TB vaccines. These insights gained from vaccines and immunogenic proteins will inform the development of novel mycobacterial vaccines, particularly mRNA vaccines, for effective TB control.

8.
J Am Chem Soc ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598684

RESUMEN

Cross-coupling reactions represent an indispensable tool in chemical synthesis. An intriguing challenge in this field is to achieve selective cross-coupling between two precursors with similar reactivity or, to the limit, the identical molecules. Here we report an unexpected dehydrobrominative cross-coupling between 1,3,5-tris(2-bromophenyl)benzene molecules on silver surfaces. Using scanning tunneling microscopy, we examine the reaction process at the single-molecular level, quantify the selectivity of the dehydrobrominative cross-coupling, and reveal the modulation of selectivity by substrate lattice-related catalytic activity or molecular assembly effect. Theoretical calculations indicate that the dehydrobrominative cross-coupling proceeds via regioselective C-H bond activation of debrominated TBPB and subsequent highly selective C-C coupling of the radical-based intermediates. The reaction kinetics plays an important role in the selectivity for the cross-coupling. This work not only expands the toolbox for chemical synthesis but also provides important mechanistic insights into the selectivity of coupling reactions on the surface.

9.
BMC Nurs ; 23(1): 172, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38481274

RESUMEN

BACKGROUND: The quality of transitional care is closely related to the health outcomes of patients, and understanding the status of transitional care for patients is crucial to improving the health outcomes of patients. Therefore, this study aims to investigate the quality of transitional care in elderly patients with chronic diseases and analyze its influencing factors, to provide a basis for improving transitional care services. METHODS: This is a cross-sectional study. We used the Chinese version of the Partners at Care Transitions Measure (PACT-M) to survey patients with chronic diseases aged 60 years and older who were about to be discharged from five tertiary hospitals in Henan and Shanxi provinces. We used the mean ± standard deviation to describe the quality of transitional care, t-test or one-way ANOVA, and regression analysis to explore the factors affecting the quality of transitional care for patients. RESULTS: 182 elderly patients with chronic diseases aged ≥ 60 years completed the PACT-M survey. The scores of PACT-M1 and PACT-M2 were (30.69 ± 7.87) and (25.59 ± 7.14) points, respectively. The results of the t-test or one-way ANOVA showed that the patient's marital status, ethnicity, religion, educational level, preretirement occupation, residence, household income per month, and living situation had an impact on the quality of transitional care for elderly patients with chronic diseases (P < 0.05). The results of regression analyses showed that patients' preretirement occupation, social support, and health status were the main influences on the quality of transitional care for elderly patients with chronic diseases (P < 0.05), and they explained 63.1% of the total variance. CONCLUSIONS: The quality of transitional care for older patients with chronic illnesses during the transition from hospital to home needs further improvement. Factors affecting the quality of transitional care included patients' pre-retirement occupation, social support, and health status. We can improve the hospital-community-family tertiary linkage service to provide coordinated and continuous transitional care for patients based on their occupation, health status, and social support to enhance the quality of transitional care and the patient's health.

10.
Immunology ; 172(3): 486-499, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38547355

RESUMEN

To explore the effect of K33 only mutant ubiquitin (K33O) on bone marrow-derived dendritic cells' (BMDCs') maturity, antigen uptake capability, surface molecule expressions and BMDC-mediated CTL priming, and further investigate the role of PI3K-Akt engaged in K33O-increased BMDC maturation, antigen uptake and presentation, surface molecule expressions and BMDC-based CTL priming. BMDCs were conferred K33O and other ubiquitin mutants (K33R, K48R, K63R-mutant ubiquitin) incubation or LY294002 and wortmannin pretreatment. PI3K-Akt phosphorylation, antigen uptake, antigenic presentation and CD86/MHC class I expression in BMDC were determined by western blot or flow cytometry. BMDC-based CTL proliferation and priming were determined by in vitro mixed lymphocyte reaction (MLR), ex vivo enzyme-linked immunospot assay (Elispot) and flow cytometry with intracellular staining, respectively. The treatment with K33O effectively augmented PI3K-Akt phosphorylation, BMDCs' antigen uptake, antigenic presentation, CD86/MHC class I and CD11c expressions. MLR, Elispot and flow cytometry revealed that K33O treatment obviously enhanced CTL proliferation, CTL priming and perforin/granzyme B expression. The pretreatment with PI3K-Akt inhibitors efficiently abrogated K33O's effects on BMDC. The replenishment of K33 only mutant ubiquitin augments BMDC-mediated CTL priming in bone marrow-derived dendritic cells via PI3K-Akt signalling.


Asunto(s)
Presentación de Antígeno , Células de la Médula Ósea , Células Dendríticas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Linfocitos T Citotóxicos , Ubiquitina , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ubiquitina/metabolismo , Linfocitos T Citotóxicos/inmunología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Presentación de Antígeno/inmunología , Ratones Endogámicos C57BL , Fosforilación , Activación de Linfocitos , Diferenciación Celular , Mutación , Morfolinas/farmacología , Prueba de Cultivo Mixto de Linfocitos , Proliferación Celular , Antígeno B7-2/metabolismo , Antígeno B7-2/genética , Antígeno B7-2/inmunología , Células Cultivadas , Cromonas/farmacología , Wortmanina/farmacología , Androstadienos/farmacología
11.
Child Abuse Negl ; 151: 106736, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522146

RESUMEN

BACKGROUND: Although people strive for meaning in life, life is full of experiences that challenge meaning. According to Bowen's family systems theory, the family is both a relational and an emotional system in which family members influence and are influenced by each other. Invalidating environment, reflecting a deficient family emotional setting, may be a key influencing factor in diminishing meaning in life. Existing studies have not directly explored the effects of the invalidating environment on meaning in life and its underlying mechanism. OBJECTIVE: Guided by Bowen's family systems theory, this study aims to explore the relationship between invalidating environment and meaning in life, as well as the mediating effects of regulatory emotional self-efficacy and the satisfaction of basic psychological needs. METHODS: A sample of 555 university students (62.5 % female, 37.5 % male; Mage =19.13 years old, SD = 1.72) completed questionnaires regarding demographics, invalidating environment, meaning in life, regulatory emotional self-efficacy, and basic psychological needs satisfaction. RESULTS: Results revealed that: (a) invalidating environment negatively predicts meaning in life; (b) regulatory emotional self-efficacy and basic psychological needs satisfaction serve as both independent and chain mediators between invalidating environment and meaning in life. CONCLUSION: Invalidating environment affects meaning in life through regulatory emotional self-efficacy and basic psychological needs satisfaction. This finding has significant theoretical implications and provides a feasible pathway to improve children's meaning in life at both the parent and child levels.


Asunto(s)
Familia , Autoeficacia , Niño , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Emociones , Satisfacción Personal , Padres
12.
Food Chem ; 443: 138534, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38320377

RESUMEN

This study employed gas chromatography-mass spectrometry with olfactory (GC-MS-O) and multi-omics methods to investigate the changes in volatile flavor compounds during the freezing process of Pacific chub mackerel (Scomber japonicus) from Japan and China, and Spanish mackerel (Scomberomorus niphonius). A total of 18 volatile flavor compounds were identified, and significant differences in volatile flavor components were observed among samples frozen for 1 week, 1 year, and 2 years. The results of the Partial least squares regression (PLSR) indicated that the fishy odor was correlated with independent variables such as fatty acids (FA 22:4, FA 28:6, FA 24:4), differentially expressed genes (Gene.2425 (NDUFA5), Gene.38 (GPX1), and Gene.2844 (DAD1)). Classification and regression tree (CART) analysis revealed that the peak area values of fatty acids (FA 22:5, FA 20:4) and fatty acid esters of hydroxy fatty acids (FAHFA 18:0/22:3) were the main differentiating factors for fishy odor perception.


Asunto(s)
Cyprinidae , Perciformes , Compuestos Orgánicos Volátiles , Animales , Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Congelación , Multiómica , Perciformes/genética , Ácidos Grasos , Compuestos Orgánicos Volátiles/análisis
13.
Angew Chem Int Ed Engl ; 63(13): e202315674, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38327006

RESUMEN

Sesquiterpene synthases (STPSs) catalyze carbocation-driven cyclization reactions that can generate structurally diverse hydrocarbons. The deprotonation-reprotonation process is widely used in STPSs to promote structural diversity, largely attributable to the distinct regio/stereoselective reprotonations. However, the molecular basis for reprotonation regioselectivity remains largely understudied. Herein, we analyzed two highly paralogous STPSs, Artabotrys hexapetalus (-)-cyperene synthase (AhCS) and ishwarane synthase (AhIS), which catalyze reactions that are distinct from the regioselective protonation of germacrene A (GA), resulting in distinct skeletons of 5/5/6 tricyclic (-)-cyperene and 6/6/5/3 tetracyclic ishwarane, respectively. Isotopic labeling experiments demonstrated that these protonations occur at C3 and C6 of GA in AhCS and AhIS, respectively. The cryo-electron microscopy-derived AhCS complex structure provided the structural basis for identifying different key active site residues that may govern their functional disparity. The structure-guided mutagenesis of these residues resulted in successful functional interconversion between AhCS and AhIS, thus targeting the three active site residues [L311-S419-C458]/[M311-V419-A458] that may act as a C3/C6 reprotonation switch for GA. These findings facilitate the rational design or directed evolution of STPSs with structurally diverse skeletons.


Asunto(s)
Transferasas Alquil y Aril , Sesquiterpenos , Microscopía por Crioelectrón , Sesquiterpenos/química , Catálisis , Dominio Catalítico , Transferasas Alquil y Aril/genética
14.
Support Care Cancer ; 32(3): 155, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38347229

RESUMEN

PURPOSE: Sleep problems are a significant issue in patients with lung cancer, and resilience is a closely related factor. However, few studies have identified subgroups of resilience and their relationship with sleep quality. This study aimed to investigate whether there are different profiles of resilience in patients with lung cancer, to determine the sociodemographic characteristics of each subgroup, and to determine the relationship between resilience and sleep quality in different subgroups. METHODS: A total of 303 patients with lung cancer from four tertiary hospitals in China completed the General Sociodemographic sheet, the Connor-Davidson Resilience Scale, and the Pittsburgh Sleep Quality Index. Latent profile analysis was applied to explore the latent profiles of resilience. Multivariate logistic regression was used to analyze the sociodemographic variables in each profile, and ANOVA was used to explore the relationships between resilience profiles and sleep quality. RESULTS: The following three latent profiles were identified: the "high-resilience group" (30.2%), the "moderate-resilience group" (46.0%), and the "low-resilience group" (23.8%). Gender, place of residence, and average monthly household income significantly influenced the distribution of resilience in patients with lung cancer. CONCLUSION: The resilience patterns of patients with lung cancer varied. It is suggested that health care providers screen out various types of patients with multiple levels of resilience and pay more attention to female, rural, and poor patients. Additionally, individual differences in resilience may provide an actionable means for addressing sleep problems.


Asunto(s)
Neoplasias Pulmonares , Pruebas Psicológicas , Resiliencia Psicológica , Trastornos del Sueño-Vigilia , Humanos , Femenino , Calidad del Sueño , Trastornos del Sueño-Vigilia/epidemiología , Trastornos del Sueño-Vigilia/etiología
15.
Cell Death Dis ; 15(2): 161, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383507

RESUMEN

Oxidative stress dysfunction has recently been found to be involved in the pathogenesis of premature ovarian insufficiency (POI). Previously, we found that advanced oxidation protein products (AOPPs) in plasma were elevated in women with POI and had an adverse effect on granulosa cell proliferation. However, the mechanism underlying the effects of AOPPs on autophagy-lysosome pathway regulation in granulosa cells remains unclear. In this study, the effect of AOPPs on autophagy and lysosomal biogenesis and the underlying mechanisms were explored by a series of in vitro experiments in KGN and COV434 cell lines. AOPP-treated rat models were employed to determine the negative effect of AOPPs on the autophagy-lysosome systems in vivo. We found that increased AOPP levels activated the mammalian target of rapamycin (mTOR) pathway, and inhibited the autophagic response and lysosomal biogenesis in KGN and COV434 cells. Furthermore, scavenging of reactive oxygen species (ROS) with N-acetylcysteine and blockade of the mTOR pathway with rapamycin or via starvation alleviated the AOPP-induced inhibitory effects on autophagy and lysosomal biogenesis, suggesting that these effects of AOPPs are ROS-mTOR dependent. The protein expression and nuclear translocation of transcription factor EB (TFEB), the key regulator of lysosomal and autophagic function, were also impaired by the AOPP-activated ROS-mTOR pathway. In addition, TFEB overexpression attenuated the AOPP-induced impairment of autophagic flux and lysosomal biogenesis in KGN and COV434 cells. Chronic AOPP stimulation in vivo also impaired autophagy and lysosomal biogenesis in granulosa cells of rat ovaries. The results highlight that AOPPs lead to impairment of autophagic flux and lysosomal biogenesis via ROS-mTOR-TFEB signaling in granulosa cells and participate in the pathogenesis of POI.


Asunto(s)
Productos Avanzados de Oxidación de Proteínas , Serina-Treonina Quinasas TOR , Humanos , Ratas , Femenino , Animales , Productos Avanzados de Oxidación de Proteínas/metabolismo , Productos Avanzados de Oxidación de Proteínas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Lisosomas/metabolismo , Células de la Granulosa/metabolismo , Mamíferos
16.
Theranostics ; 14(3): 988-1009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250049

RESUMEN

The hypothalamus plays a fundamental role in controlling lipid metabolism through neuroendocrine signals. However, there are currently no available drug targets in the hypothalamus that can effectively improve human lipid metabolism. In this study, we found that the antimalarial drug artemether (ART) significantly improved lipid metabolism by specifically inhibiting microglial activation in the hypothalamus of high-fat diet-induced mice. Mechanically, ART protects the thyrotropin-releasing hormone (TRH) neurons surrounding microglial cells from inflammatory damage and promotes the release of TRH into the peripheral circulation. As a result, TRH stimulates the synthesis of thyroid hormone (TH), leading to a significant improvement in hepatic lipid disorders. Subsequently, we employed a biotin-labeled ART chemical probe to identify the direct cellular target in microglial cells as protein kinase Cδ (PKCδ). Importantly, ART directly targeted PKCδ to inhibit its palmitoylation modification by blocking the binding of zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5), which resulted in the inhibition of downstream neuroinflammation signaling. In vivo, hypothalamic microglia-specific PKCδ knockdown markedly impaired ART-dependent neuroendocrine regulation and lipid metabolism improvement in mice. Furthermore, single-cell transcriptomics analysis in human brain tissues revealed that the level of PKCδ in microglia positively correlated with individuals who had hyperlipemia, thereby highlighting a clinical translational value. Collectively, these data suggest that the palmitoylation of microglial PKCδ in the hypothalamus plays a role in modulating peripheral lipid metabolism through hypothalamus-liver communication, and provides a promising therapeutic target for fatty liver diseases.


Asunto(s)
Lipoilación , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Microglía , Hipotálamo , Metabolismo de los Lípidos , Arteméter
17.
Artículo en Inglés | MEDLINE | ID: mdl-38062745

RESUMEN

Objective: Electrical Stimulation Therapy (EST) shows promise for the purpose of accelerating wound healing, but the right electrical stimulation parameters and its mode of action remain unclear. We aim to evaluate the effect of a new EST clinical device on epidermal repair using an in vitro human skin wound model. Approach: We scaled up a well-established 3D De-Epidermized Dermis-Human Skin Equivalent (DED-HSE) wound model to fit a clinically used device that delivers preprogrammed microcurrent EST. The impact of EST on re-epithelialization of 4-mm circular epidermal wounds was assessed after 4 and 7 days of treatment, using metabolic activity assay, immunohistochemistry (IHC) staining, and RNA in situ hybridization. Results: EST was successfully applied to the wounded in vitro skin model. Large DED-HSEs retained good cell viability for up to 7 days of EST treatment. Excisional wounds subjected to EST for 4 days consistently exhibited faster closure (mean 65.8%, n = 9) compared to untreated wounds (mean 49.7%, n = 9) (p < 0.05). Wounds exposed to EST exhibited significantly longer epithelial tongues (re-epithelialization mean 50.3%, n = 9) than untreated wounds (mean 26.2%, n = 9) (p < 0.001), suggesting faster keratinocyte migration and proliferation. Increased MMP1 transcription (p < 0.05) in ES-treated periwound suggests a mechanism for enhanced keratinocyte migration. IHC staining showed advanced epidermal proliferation (p63) and differentiation (K10) in EST-exposed wounds (n = 15), as well as stronger attachment of the newly formed epidermis into the dermis compared to untreated controls (n = 15) (p < 0.001). Innovation: We present a novel approach to assess an EST clinical device designed to stimulate wound healing. Using a scaled-up 3D human skin wound model, we could demonstrate the positive effect of EST on epithelial cell responses and shed light on possible mechanism. Conclusion: Our study provides experimental evidence that microcurrent therapy accelerates wound closure and improves the quantity and quality of re-epithelialization.

18.
Mol Plant Pathol ; 25(1): e13393, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37814404

RESUMEN

Sugarcane smut caused by Sporisorium scitamineum seriously impairs sugarcane production and quality. Sexual mating/filamentation is a critical step of S. scitamineum pathogenesis, yet the regulatory mechanisms are not fully understood. In this study, we identified the SsAGA, SsODC, and SsSAMDC genes, which are involved in polyamine biosynthesis in S. scitamineum. Deletion of SsODC led to complete loss of filamentous growth after sexual mating, and deletion of SsAGA or SsSAMDC caused reduced filamentation. Double deletion of SsODC and SsSAMDC resulted in auxotrophy for putrescine (PUT) and spermidine (SPD) when grown on minimal medium (MM), indicating that these two genes encode enzymes that are critical for PUT and SPD biosynthesis. We further showed that low PUT concentrations promoted S. scitamineum filamentation, while high PUT concentrations suppressed filamentation. Disrupted fungal polyamine biosynthesis also resulted in a loss of pathogenicity and reduced fungal biomass within infected plants at the early infection stage. SPD formed a gradient from the diseased part to nonsymptom parts of the cane stem, suggesting that SPD is probably favourable for fungal virulence. Mutants of the cAMP-PKA (SsGPA3-SsUAC1-SsADR1) signalling pathway displayed up-regulation of the SsODC gene and elevated intracellular levels of PUT. SsODC directly interacted with SsGPA3, and sporidia of the ss1uac1ΔodcΔ mutant displayed abundant pseudohyphae. Furthermore, we found that elevated PUT levels caused accumulation of intracellular reactive oxygen species (ROS), probably by suppressing transcription of ROS-scavenging enzymes, while SPD played the opposite role. Overall, our work proves that polyamines play important roles in the pathogenic development of sugarcane smut fungus, probably by collaboratively regulating intracellular redox homeostasis with the cAMP-PKA signalling pathway.


Asunto(s)
Basidiomycota , Saccharum , Ustilaginales , Virulencia , Poliaminas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxidación-Reducción , Putrescina/metabolismo , Espermidina/metabolismo , Homeostasis , Saccharum/genética , Saccharum/metabolismo , Saccharum/microbiología
19.
Int J Biol Macromol ; 255: 127947, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951422

RESUMEN

Improper use of antibiotics has led to the global rise of drug-resistant biofilm bacteria. Thus, researchers have been increasingly interested in green materials that are highly biocompatible and have low toxicity. Here, nanogels (NGs) with imine bonds were synthesized by crosslinking kiwifruit-derived DNA's primary amine and aromatic aldehydes (cuminaldehyde, p-anisaldehyde, or vanillin) under water-in-hexane emulsion processes. Transmission electron microscope showed that the NGs had spherical geometry with an average particle size ranging from 40 to 140 nm and that the zeta potential indicated a negative charge. Additionally, the DNA-aromatic aldehyde NGs showed low cytotoxicity toward normal cell organoids and human RBCs in cell viability tests. These NGs were also tested against four pathogenic bacteria for various assays. DNA-vanillin (DNA-VA) NGs exhibited significant antibacterial effects against bacteria with very low inhibitory concentrations as seen in a minimum inhibitory concentration assay. Scanning electron microscope observation revealed that the bacteria were deformed, and immunoblotting detected intracellular groEL protein expression. In agreement with these results, DNA-aromatic aldehyde NGs successfully protected C. elegans from P. aeruginosa-induced lethality. These DNA NGs provided a multivalent 3D space for antibacterial aromatic aldehydes to tether, enhancing their interaction with the bacterial wall. These results offer a new direction for the development of novel antibiotics in the future.


Asunto(s)
Aldehídos , Caenorhabditis elegans , Humanos , Animales , Nanogeles , Aldehídos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , ADN , Pruebas de Sensibilidad Microbiana
20.
Front Genet ; 14: 1264237, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075676

RESUMEN

Background: A rare X-linked hereditary condition known as ATP6AP2-congenital disorder of glycosylation (ATP6AP2-CDG) is caused by pathogenic variants in ATP6AP2, resulting in autophagic misregulation with reduced siganling of mammalian target of rapamycin (mTOR) that clinically presents with aberrant protein glycosylation, hepatosteatosis, immunodeficiency, cutis laxa, and psychomotor dysfunction. To date, only two missense mutations have been reported in three patients from two unrelated families. Methods: In order to extend the profiles of phenotype and genotype associated with ATP6AP2-CDG, we assessed the clinical history, whole exome sequencing (WES), and liver histology as well as immunohistochemistry in a Chinese patient, and performed quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting and untargeted metabolomics in genetic exogenously constructed cells. Results: The 11-month-old Chinese boy presented with recurrent jaundice, cutis laxa, cirrhosis, growth retardation, coagulopathy, anemia, and cardiomegaly, and underwent liver transplantation. A novel mutation, c.185G>A (p.Gly62Glu), was identified in exon 3 of ATP6AP2. The expression of ATP6AP2 was observed to remain unchanged in the liver sample of the patient as well as in HEK293T cells harboring the p.Gly62Glu. This missense mutation was found to dysregulate autophagy and mTOR signaling. Moreover, metabolomics analysis revealed that the exogenously introduced Gly62Glu mutant resulted in the downregulation of numerous metabolites involved in lipid metabolism pathway. Conclusion: This study may enable a more detailed exploration of its precise pathogenesis and potential therapeutic interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...