Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 114: 154775, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36990008

RESUMEN

BACKGROUND: Nowadays, diabetic kidney disease (DKD) has become one of the most threatening to the end-stage renal diseases, and the early prevention of DKD is inevitable for Diabetes Mellitus (DM) patients. AIMS: Pyroptosis, a programmed cell death that mediates renal inflammation induced early renal injury. The trimethylamine n-oxide (TMAO) was also an independent risk factor for renal injury. Here, the associations between TMAO-induced pyroptosis and pathogenesis of DKD were studied, and the potential mechanism of Zuogui-Jiangtang-Yishen (ZGJTYS) decoction to prevent DKD was further investigated. METHOD: Using Goto-Kakizaki (GK) rats to establish the early DKD models. The 16S-ribosomal RNA (16S rRNA) sequencing, fecal fermentation and UPLC-MS targeted metabolism techniques were combined to explore the changes of gut-derived TMAO level under the background of DKD and the effects of ZGJTYS. The proximal convoluted tubule epithelium of human renal cortex (HK-2) cells was adopted to explore the influence of pyroptosis regulated by TMAO. RESULTS: It was demonstrated that ZGJTYS could prevent the progression of DKD by regulating glucolipid metabolism disorder, improving renal function and delaying renal pathological changes. In addition, we illustrated that gut-derived TMAO could promote DKD by activating the mROS-NLRP3 axis to induce pyroptosis. Furthermore, besides interfering with the generation of TMAO through gut microbiota, ZGJTYS inhibited TMAO-induced pyroptosis with a high-glucose environment and the underlying mechanism was related to the regulation of mROS-NLRP3 axis. CONCLUSION: Our results suggested that ZGJTYS inhibited the activation of pyroptosis by gut-derived TMAO via the mROS-NLRP3 axis to prevent DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Humanos , Ratas , Cromatografía Liquida , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , ARN Ribosómico 16S , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos
2.
Acta Diabetol ; 59(10): 1295-1308, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35857109

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) has already become a global pandemic. Recently, reports showed its pathogenesis was closely related to a disorder of gut microbiota. In China, the Liu-Wei-Di-Huang Pills (LWDH) have treated T2DM for thousands of years. However, its therapeutic mechanism associated with gut microbiota is worthy of further study. AIMS: This study aims to investigate the effects of LWDH on T2DM by regulating gut microbiota and short-chain fatty acids (SCFAs) in Goto-Kakizaki (GK) rats. METHODS: T2DM models were successfully established based on GK rats and administrated with LWDH. The changes in fasting blood glucose (FBG), oral glucose tolerance test (OGTT), and serum insulin (INS) were determined, and the immunohistochemical (IHC) method was used to test INS expression in pancreas. The 16S-ribosomal DNA (16S rDNA) sequencing analysis assessed gut microbiota structural changes; a gas chromatography-mass spectrometer (GC-MS)-based metabolomics method was adopted to detect SCFA levels. The pathological morphology of jejunum was detected by hematoxylin-eosin (H&E) staining, and the expression of GPR43, GPR41, GLP-1, and GLP-1R was evaluated by qRT-PCR and ELISA, respectively. RESULTS: We observed that GK rats treated with LWDH: (a) has altered the microbial structure and promoted the abundance of bacteria in Firmicutes, including Lactobacillus, Allobaculum, and Ruminococcus_2, (b) increased SCFAs levels involving acetic acid, propionic acid, and butyric acid and (c) alleviated T2DM and jejunum injuries potentially based on SCFAs-GPR43/41-GLP-1 pathway. CONCLUSION: LWDH could improve T2DM by regulating gut microbiota and SCFAs, and the therapeutic mechanism might be related to the SCFAs-GPR43/41-GLP-1 pathway.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos Volátiles , Péptido 1 Similar al Glucagón/uso terapéutico , Metabolismo de los Lípidos , Ratas
3.
Molecules ; 27(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35630607

RESUMEN

In this study, a green and effective extraction method was proposed to extract two main compounds, ginsenosides and polysaccharides, from American ginseng by combining deep eutectic solvents (DESs) with aqueous two-phase systems. The factors of type of DESs, water content in DESs, the solid-liquid ratio, extraction temperature, and extraction time were studied in the solid-liquid extraction. Then, the aqueous two-phase system (DESs-ethylene oxide-propylene oxide (EOPO)) and salty solution exchange (EOPO-salty solution) was applied for the purification of polysaccharides. The content of the polysaccharides and ginsenosides were analyzed by the anthrone-sulfuric acid method and HPLC method, which showed that the extraction efficiency of deep eutectic solvents (DESs) was better than conventional methods. Moreover, the antioxidant activities of ginseng polysaccharides and their cytotoxicity were further assayed. The advantages of the current study are that, throughout the whole extraction process, we avoided the usage of an organic reagent. Furthermore, the separated green solvent DESs and EOPO could be recovered and reused for a next cycle. Thus, this study proposed a new, green and recyclable extraction method for extracting ginsenosides and polysaccharides from American ginseng.


Asunto(s)
Ginsenósidos , Panax , Disolventes Eutécticos Profundos , Polisacáridos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA