Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Sci ; 13(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36831913

RESUMEN

Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder, where differences are often present relating to the performance of motor skills. Our previous work elucidated unique event-related potential patterns of neural activity in those with ADHD when performing visuomotor and force-matching motor paradigms. The purpose of the current study was to identify whether there were unique neural sources related to somatosensory function and motor performance in those with ADHD. Source localization (sLORETA) software identified areas where neural activity differed between those with ADHD and neurotypical controls when performing a visuomotor tracing task and force-matching task. Median nerve somatosensory evoked potentials (SEPs) were elicited, while whole-head electroencephalography (EEG) was performed. sLORETA localized greater neural activity post-FMT in those with ADHD, when compared with their baseline activity (p < 0.05). Specifically, greater activity was exhibited in BA 31, precuneus, parietal lobe (MNI coordinates: X = -5, Y = -75, and Z = 20) at 156 ms post stimulation. No significant differences were found for any other comparisons. Increased activity within BA 31 in those with ADHD at post-FMT measures may reflect increased activation within the default mode network (DMN) or attentional changes, suggesting a unique neural response to the sensory processing of force and proprioceptive afferent input in those with ADHD when performing motor skills. This may have important functional implications for motor tasks dependent on similar proprioceptive afferent input.

2.
J Neurophysiol ; 129(1): 247-261, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36448686

RESUMEN

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that has noted alterations to motor performance and coordination, potentially affecting learning processes and the acquisition of motor skills. This work will provide insight into the role of altered neural processing and sensorimotor integration (SMI) while learning a novel visuomotor task in young adults with ADHD. This work compared adults with ADHD (n = 12) to neurotypical controls (n = 16), using a novel visuomotor tracing task, where participants used their right-thumb to trace a sinusoidal waveform that varied in both frequency and amplitude. This learning paradigm was completed in pre, acquisition, and post blocks, where participants additionally returned and completed a retention and transfer test 24 h later. Right median nerve short latency somatosensory-evoked potentials (SEPs) were collected pre and post motor acquisition. Performance accuracy and variability improved at post and retention measures for both groups for both normalized (P < 0.001) and absolute (P < 0.001) performance scores. N18 SEP: increased in the ADHD group post motor learning and decreased in controls (P < 0.05). N20 SEP: increased in both groups post motor learning (P < 0.01). P25: increased in both groups post motor learning (P < 0.001). N24: increased for both groups at post measures (P < 0.05). N30: decreased in the ADHD group and increased in controls (P < 0.05). These findings suggest that there may be differences in cortico-cerebellar and prefrontal processing in response to novel visuomotor tasks in those with ADHD.NEW & NOTEWORTHY Alterations to somatosensory-evoked potentials (SEPs) were present in young adults with attention-deficit/hyperactivity disorder (ADHD), when compared with neurotypical controls. The N18 and N30 SEP peak had differential changes between groups, suggesting alterations to olivary-cerebellar-M1 processing and SMI in those with ADHD when acquiring a novel visuomotor tracing task. This suggests that short-latency SEPs may be a useful biomarker in the assessment of differential responses to motor acquisition in those with ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Humanos , Adulto Joven , Desempeño Psicomotor/fisiología , Destreza Motora/fisiología , Aprendizaje/fisiología , Pulgar , Electroencefalografía
3.
Brain Sci ; 12(6)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35741694

RESUMEN

Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that exhibits unique neurological and behavioural characteristics. Our previous work using event-related potentials demonstrated that adults with ADHD process audiovisual multisensory stimuli somewhat differently than neurotypical controls. This study utilised an audiovisual multisensory two-alternative forced-choice discrimination task. Continuous whole-head electroencephalography (EEG) was recorded. Source localization (sLORETA) software was utilised to determine differences in the contribution made by sources of neural generators pertinent to audiovisual multisensory processing in those with ADHD versus neurotypical controls. Source localization techniques elucidated that the controls had greater neural activity 164 ms post-stimulus onset when compared to the ADHD group, but only when responding to audiovisual stimuli. The source of the increased activity was found to be Brodmann Area 2, postcentral gyrus, right-hemispheric parietal lobe referenced to Montreal Neurological Institute (MNI) coordinates of X = 35, Y = −40, and Z = 70 (p < 0.05). No group differences were present during either of the unisensory conditions. Differences in the integration areas, particularly in the right-hemispheric parietal brain regions, were found in those with ADHD. These alterations may correspond to impaired attentional capabilities when presented with multiple simultaneous sensory inputs, as is the case during a multisensory condition.

4.
Front Hum Neurosci ; 16: 1078925, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684834

RESUMEN

Introduction: Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that exhibits unique neurological and behavioral characteristics. Those with ADHD often have noted impairments in motor performance and coordination, including during tasks that require force modulation. The present study provides insight into the role of altered neural processing and SMI in response to a motor learning paradigm requiring force modulation and proprioception, that previous literature has suggested to be altered in those with ADHD, which can also inform our understanding of the neurophysiology underlying sensorimotor integration (SMI) in the general population. Methods: Adults with ADHD (n = 15) and neurotypical controls (n = 15) performed a novel force-matching task, where participants used their right-thumb to match a trace template that varied from 2-12% of their Abductor Pollicis Brevis maximum voluntary contraction. This motor task was completed in pre, acquisition, and post blocks. Participants also completed a retention test 24 h later. Median nerve somatosensory-evoked potentials (SEPs) were collected pre and post motor acquisition. SEPs were stimulated at two frequencies, 2.47 Hz and 4.98 Hz, and 1,000 sweeps were recorded using 64-electrode electroencephalography (EEG) at 2,048 Hz. SEP amplitude changes were normalized to each participant's baseline values for that peak. Results: Both groups improved at post measures (ADHD: 0.85 ± 0.09; Controls: 0.85 ± 0.10), with improvements maintained at retention (ADHD: 0.82 ± 0.11; Controls: 0.82 ± 0.11). The ADHD group had a decreased N18 post-acquisition (0.87 ± 0.48), while the control N18 increased (1.91 ± 1.43). The N30 increased in both groups, with a small increase in the ADHD group (1.03 ± 0.21) and a more pronounced increase in controls (1.15 ± 0.27). Discussion: Unique neural differences between groups were found after the acquisition of a novel force-matching motor paradigm, particularly relating to the N18 peak. The N18 differences suggest that those with ADHD have reduced olivary-cerebellar-M1 inhibition when learning a novel motor task dependent on force-modulation, potentially due to difficulties integrating the afferent feedback necessary to perform the task. The results of this work provide evidence that young adults with ADHD have altered proprioceptive processing when learning a novel motor task when compared to neurotypical controls.

5.
Multisens Res ; 33(6): 599-623, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31899870

RESUMEN

Multisensory integration is a fundamental form of sensory processing that is involved in many everyday tasks. Those with Attention-Deficit/Hyperactivity Disorder (ADHD) have characteristic alterations to various brain regions that may influence multisensory processing. The overall aim of this work was to assess how adults with ADHD process audiovisual multisensory stimuli during a complex response time task. The paradigm used was a two-alternative forced-choice discrimination task paired with continuous 64-electrode electroencephalography, allowing for the measurement of response time and accuracy to auditory, visual, and audiovisual multisensory conditions. Analysis revealed that those with ADHD ( n = 10) respond faster than neurotypical controls ( n = 12) when presented with auditory, visual, and audiovisual multisensory conditions, while also having race model violation in early response latency quantiles. Adults with ADHD also had more prominent multisensory processing over parietal-occipital brain regions at early post-stimulus latencies, indicating that altered brain structure may have important outcomes for audiovisual multisensory processing. The present study is the first to assess how those with ADHD respond to multisensory conditions during a complex response time task, and demonstrates that adults with ADHD have unique multisensory processing when assessing both behavioral response time measures and neurological measures.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Percepción Auditiva/fisiología , Lóbulo Occipital/fisiopatología , Lóbulo Parietal/fisiopatología , Tiempo de Reacción/fisiología , Percepción Visual/fisiología , Estimulación Acústica , Adolescente , Adulto , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Electroencefalografía , Femenino , Humanos , Masculino , Estimulación Luminosa , Adulto Joven
6.
Front Hum Neurosci ; 13: 95, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941026

RESUMEN

The purpose of this study was to assess how young adults with attention-deficit/hyperactivity disorder (ADHD) process audiovisual (AV) multisensory stimuli using behavioral and neurological measures. Adults with a clinical diagnosis of ADHD (n = 10) and neurotypical controls (n = 11) completed a simple response time task, consisting of auditory, visual, and AV multisensory conditions. Continuous 64-electrode electroencephalography (EEG) was collected to assess neurological responses to each condition. The AV multisensory condition resulted in the shortest response times for both populations. Analysis using the race model (Miller, 1982) demonstrated that those with ADHD had violation of the race model earlier in the response, which may be a marker for impulsivity. EEG analysis revealed that both groups had early multisensory integration (MSI) occur following multisensory stimulus onset. There were also significant group differences in event-related potentials (ERPs) in frontal, parietal, and occipital brain regions, which are regions reported to be altered in those with ADHD. This study presents results examining multisensory processing in the population of adults with ADHD, and can be used as a foundation for future ADHD research using developmental research designs as well as the development of novel technological supports.

7.
Brain Sci ; 10(1)2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31906192

RESUMEN

When used in educational settings, simulations utilizing virtual reality (VR) technologies can reduce training costs while providing a safe and effective learning environment. Tasks can be easily modified to maximize learning objectives of different levels of trainees (e.g., novice, intermediate, expert), and can be repeated for the development of psychomotor skills. VR offers a multisensory experience, providing visual, auditory, and haptic sensations with varying levels of fidelity. While simulating visual and auditory stimuli is relatively easy and cost-effective, similar representations of haptic sensation still require further development. Evidence suggests that mixing high- and low-fidelity realistic sensations (e.g., audition and haptic) can improve the overall perception of realism, however, whether this also leads to improved performance has not been examined. The current study examined whether audiohaptic stimuli presented in a virtual drilling task can lead to improved motor performance and subjective realism, compared to auditory stimuli alone. Right-handed participants (n = 16) completed 100 drilling trials of each stimulus type. Performance measures indicated that participants overshot the target during auditory trials, and undershot the target during audiohaptic trials. Undershooting is thought to be indicative of improved performance, optimizing both time and energy requirements.

8.
J Med Radiat Sci ; 65(2): 163-168, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29665252

RESUMEN

Sonography of the male inguinal canal for hernia is a common request. There is debate about the accuracy and even need for sonographic assessment of inguinal hernia. A clear, concise method is presented, with correlated diagrams and sonographic images, which aims to improve the ability of sonographers to easily identify inguinal herniae.


Asunto(s)
Hernia Inguinal/diagnóstico por imagen , Conducto Inguinal/diagnóstico por imagen , Ultrasonografía/métodos , Hernia Inguinal/patología , Humanos , Conducto Inguinal/anatomía & histología , Conducto Inguinal/patología , Masculino
9.
J Manipulative Physiol Ther ; 36(8): 527-37, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24035521

RESUMEN

OBJECTIVE: The purpose of this study was investigate whether there are alterations in cerebellar output in a subclinical neck pain (SCNP) group and whether spinal manipulation before motor sequence learning might restore the baseline functional relationship between the cerebellum and motor cortex. METHODS: Ten volunteers were tested with SCNP using transcranial magnetic stimulation before and after a combined intervention of spinal manipulation and motor sequence learning. In a separate experiment, we tested 10 healthy controls using the same measures before and after motor sequence learning. Our transcranial magnetic stimulation measurements included short-interval intracortical inhibition, long-interval intracortical inhibition, and cerebellar inhibition (CBI). RESULTS: The SCNP group showed a significant improvement in task performance as indicated by a 19% decrease in mean reaction time (P < .0001), which occurred concurrently with a decrease in CBI following the combined spinal manipulation and motor sequence learning intervention (F1,6 = 7.92, P < .05). The control group also showed an improvement in task performance as indicated by a 25% increase in reaction time (P < .001) with no changes to CBI. CONCLUSIONS: Subclinical neck pain patients have altered CBI when compared with healthy controls, and spinal manipulation before a motor sequence learning task changes the CBI pattern to one similar to healthy controls.


Asunto(s)
Potenciales Evocados Motores/fisiología , Manipulación Quiropráctica/métodos , Corteza Motora/fisiología , Dolor de Cuello/terapia , Vías Nerviosas/fisiología , Adulto , Femenino , Humanos , Masculino , Músculos del Cuello , Estimulación Magnética Transcraneal/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...