Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Orthop Res ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761143

RESUMEN

Treating flexor tendon injuries within the digital flexor sheath (commonly referred to as palmar hand zone 2) presents both technical and logistical challenges. Success hinges on striking a delicate balance between safeguarding the surgical repair for tendon healing and initiating early rehabilitation to mitigate the formation of tendon adhesions. Adhesions between tendon slips and between tendons and the flexor sheath impede tendon movement, leading to postoperative stiffness and functional impairment. While current approaches to flexor tendon repair prioritize maximizing tendon strength for early mobilization and adhesion prevention, factors such as pain, swelling, and patient compliance may impede postoperative rehabilitation efforts. Moreover, premature mobilization could risk repair failure, necessitating additional surgical interventions. Pharmacological agents offer a potential avenue for minimizing inflammation and reducing adhesion formation while still promoting normal tendon healing. Although some systemic and local agents have shown promising results in animal studies, their clinical efficacy remains uncertain. Limitations in these studies include the relevance of chosen animal models to human populations and the adequacy of tools and measurement techniques in accurately assessing the impact of adhesions. This article provides an overview of the clinical challenges associated with flexor tendon injuries, discusses current on- and off-label agents aimed at minimizing adhesion formation, and examines investigational models designed to study adhesion reduction after intra-synovial flexor tendon repair. Understanding the clinical problem and experimental models may serve as a catalyst for future research aimed at addressing intra-synovial tendon adhesions following zone 2 flexor tendon repair.

2.
ACS Biomater Sci Eng ; 10(4): 2385-2397, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38538611

RESUMEN

Bone is a complex organic-inorganic composite tissue composed of ∼30% organics and ∼70% hydroxyapatite (HAp). Inspired by this, we used 30% collagen and 70% HAp extracted from natural bone using the calcination method to generate a biomimetic bone composite hydrogel scaffold (BBCHS). In one respect, BBCHS, with a fixed proportion of inorganic and organic components similar to natural bone, exhibits good physical properties. In another respect, the highly biologically active and biocompatible HAp from natural bone effectively promotes osteogenic differentiation, and type I collagen facilitates cell adhesion and spreading. Additionally, the well-structured porosity of the BBCHS provides sufficient growth space for bone marrow mesenchymal stem cells (BMSCs) while promoting substance exchange. Compared to the control group, the new bone surface of the defective location in the B-HA70+Col group is increased by 3.4-fold after 8 weeks of in vivo experiments. This strategy enables the BBCHS to closely imitate the chemical makeup and physical structure of natural bone. With its robust biocompatibility and osteogenic activity, the BBCHS can be easily adapted for a wide range of bone repair applications and offers promising potential for future research and development.


Asunto(s)
Durapatita , Osteogénesis , Durapatita/farmacología , Durapatita/química , Andamios del Tejido/química , Biomimética , Hidrogeles/farmacología , Colágeno/farmacología
3.
Clin Transl Med ; 13(8): e1358, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37537733

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) have risen to prominence as important regulators of biological processes. This study investigated whether circGNB1 functions as a competitive endogenous RNA to regulate the pathological process of oxidative stress in age-related osteoarthritis (OA). METHODS: The relationship between circGNB1 expression and oxidative stress/OA severity was determined in cartilages from OA patients at different ages. The biological roles of circGNB1 in oxidative stress and OA progression, and its downstream targets were determined using gain- and loss-of-function experiments in various biochemical assays in human chondrocytes (HCs). The in vivo effects of circGNB1 overexpression and knockdown were also determined using a destabilization of the medial meniscus (DMM) mouse model. RESULTS: Increased circGNB1 expression was detected in HCs under oxidative and inflammatory stress and in the cartilage of older individuals. Mechanistically, circGNB1 sponged miR-152-3p and thus blocked its interaction with its downstream mRNA target, ring finger protein 219 (RNF219), which in turn stabilized caveolin-1 (CAV1) by preventing its ubiquitination at the K47 residue. CircGNB1 inhibited IL-10 signalling by antagonizing miR-152-3p-mediated RNF219 and CAV1 inhibition. Consequently, circGNB1 overexpression promoted OA progression by enhancing catabolic factor expression and oxidative stress and by suppressing anabolic genes in vitro and in vivo. Furthermore, circGNB1 knockdown alleviated the severity of OA, whereas circGNB1 overexpression had the opposite effect in a DMM mouse model of OA. CONCLUSION: CircGNB1 regulated oxidative stress and OA progression via the miR-152-3p/RNF219/CAV1 axis. Modulating circGNB1 could be an effective strategy for treating OA.


Asunto(s)
MicroARNs , Osteoartritis , Ratones , Animales , Humanos , Condrocitos/metabolismo , Condrocitos/patología , MicroARNs/genética , MicroARNs/metabolismo , Células Cultivadas , Apoptosis/genética , Osteoartritis/genética , Osteoartritis/metabolismo , Modelos Animales de Enfermedad , Estrés Oxidativo/genética
4.
J Orthop Res ; 41(9): 1945-1952, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36815216

RESUMEN

The novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has infected more than 650 million people worldwide. Approximately 23% of these patients developed lasting "long-haul" COVID symptoms, including fatigue, joint pain, and systemic hyperinflammation. However, the direct clinical impact of SARS-CoV-2 infection on the skeletal system including bone and joint health has not been determined. Utilizing a humanized mouse model of COVID-19, this study provides the first direct evidence that SARS-CoV-2 infection leads to acute bone loss, increased osteoclast number, and thinner growth plates. This bone loss could decrease whole-bone mechanical strength and increase the risk of fragility fractures, particularly in older patients, while thinner growth plates may create growth disturbances in younger patients. Evaluating skeletal health in patients that have recovered from COVID-19 will be crucial to identify at-risk populations and develop effective countermeasures.


Asunto(s)
Enfermedades Óseas Metabólicas , COVID-19 , Animales , Ratones , COVID-19/complicaciones , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
5.
Global Spine J ; 13(1): 97-103, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33685261

RESUMEN

STUDY DESIGN: A retrospective study of prospectively collected radiographic and clinical data. OBJECTIVE: This study aims to investigate the relationship between endplate morphology parameters and the incidence of cage subsidence in patients with mini-open single-level oblique lateral lumbar interbody fusion (OLIF). METHODS: We included 119 inpatients who underwent OLIF from February 2015 to December 2017. A total of 119 patients with single treatment level of OLIF were included. Plain anteroposterior and lateral radiograph were taken preoperatively, postoperatively, and during follow-up. The correlation between disc height, endplate concave angle/depth, cage position and cage subsidence were investigated. Functional rating index (Visual Analogue Scale for pain, and Roland Morris Disability Questionnaire) were employed to assess clinical outcomes. RESULTS: Cage subsidence was more commonly seen at the superior endplates (42/119, 35.29%) than at the inferior endplates (6/119, 5.04%) (p < 0.01). More importantly, cage subsidence was significantly less in patients with superior endplates that were without concave angle (3/20, 15%) than with concave angle (37/99, 37.37%) (p < 0.05). Cage subsidence correlated negatively with preoperative anterior disc height (r = -0.21, p < 0.05), but positively with disc distraction rate (r = 0.27, p < 0.01). Lastly, the distance of cage to the anterior edges of the vertebral body showed a positive correlation (r = 0.26, p < 0.01). CONCLUSIONS: This study for the first time demonstrated that endplate morphology correlates with cage subsidence after OLIF. Since relatively flat endplates with smaller concave angle significantly diminish the incidence of subsidence, the morphology of cage surface should be taken into consideration when designing the next generation of cage. In addition, precise measurement of the disc height to avoid over-distraction, and more anteriorly placement of the cage is suggested to reduce subsidence.

6.
Osteoarthr Cartil Open ; 4(4): 100321, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36474787

RESUMEN

Objective: Single-cell RNA sequencing (scRNA-seq) is a powerful technology that can be applied to the cells populating the whole knee in the study of joint pathology. The knee contains cells embedded in hard structural tissues, cells in softer tissues and membranes, and immune cells. This creates a technical challenge in preparing a viable and representative cell suspension suitable for use in scRNA-seq in minimal time, where under-digestion may exclude cells in hard tissues, over-digestion may damage soft tissue cells, and prolonged digestion may induce phenotypic drift. We developed a rapid two-stage digestion protocol to overcome these difficulties. Design: A two-stage digest consisting of first collagenase IV, an intermediate cell recovery, then collagenase II on the remaining hard tissue. Cells were sequenced on the 10x Genomics platform. Results: We observed consistent cell numbers and viable single cell suspensions suitable for scRNA-seq analysis. Comparison of contralateral knees and separate mice showed reproducible cell yields and gene expression patterns by similar cell-types. A diverse collection of structural and immune cells were captured with a majority from immune origins. Two digestions were necessary to capture all cell-types. Conclusions: The knee contains a diverse mixture of stromal and immune cells that may be crucial for the study of osteoarthritis. The two-stage digestion presented here reproducibly generated highly viable and representative single-cell suspension for sequencing from the whole knee. This protocol facilitates transcriptomic studies of the joint as a complete organ.

7.
Micromachines (Basel) ; 13(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36144005

RESUMEN

A table-top microdevice was introduced in this work to produce ultrasmall particles for drug delivery via inhalation. The design and operation are similar to that of spray-drying equipment used in industry, but the device itself is much smaller and more portable in size, simpler to operate and more economical. More importantly, the device enables more accurate control over particle size. Using Flavopiridol, an anti-inflammation medication, formulations have been developed to produce inhalable particles for pulmonary delivery. A solution containing the desired components forms droplets by passing through an array of micro-apertures that vibrate via a piezo-electrical driver. High-purity nitrogen gas was introduced and flew through the designed path, which included the funnel collection and cyclone chamber, and finally was pumped away. The gas carried and dried the micronized liquid droplets along the pathway, leading to the precipitation of dry solid microparticles. The formation of the cyclone was essential to assure the sufficient travel path length of the liquid droplets to allow drying. Synthesis parameters were optimized to produce microparticles, whose morphology, size, physio-chemical properties, and release profiles met the criteria for inhalation. Bioactivity assays have revealed a high degree of anti-inflammation. The above-mentioned approach enabled the production of inhalable particles in research laboratories in general, using the simple table-top microdevice. The microparticles enable the inhalable delivery of anti-inflammation medicine to the lungs, thus providing treatment for diseases such as pulmonary fibrosis and COVID-19.

8.
Acta Biomater ; 149: 347-358, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35779774

RESUMEN

Rapid joint clearance of small molecule drugs is the major limitation of current clinical approaches to osteoarthritis and its subtypes, including post-traumatic osteoarthritis (PTOA). Particulate systems such as nano/microtechnology could provide a potential avenue for improved joint retention of small molecule drugs. One drug of interest for PTOA treatment is flavopiridol, which inhibits cyclin-dependent kinase 9 (CDK9). Herein, polylactide-co-glycolide microparticles encapsulating flavopiridol were formulated, characterized, and evaluated as a strategy to mitigate PTOA-associated inflammation through the inhibition of CDK9. Characterization of the microparticles, including the drug loading, hydrodynamic diameter, stability, and release profile was performed. The mean hydrodynamic diameter of flavopiridol particles was ∼15 µm, indicating good syringeability and low potential for phagocytosis. The microparticles showed no cytotoxicity in-vitro, and drug activity was maintained after encapsulation, even after prolonged exposure to high temperatures (60 °C). Flavopiridol-loaded microparticles or blank (unloaded) microparticles were administered by intraarticular injection in a rat knee injury model of PTOA. We observed significant joint retention of flavopiridol microparticles compared to the soluble flavopiridol, confirming the sustained release behavior of the particles. Matrix metalloprotease (MMP) activity, an indicator of joint inflammation, was significantly reduced by flavopiridol microparticles 3 days post-injury. Histopathological analysis showed that flavopiridol microparticles reduced PTOA severity 28 days post-injury. Taken altogether, this work demonstrates a promising biomaterial platform for sustained small molecule drug delivery to the joint space as a therapeutic measure for post-traumatic osteoarthritis. STATEMENT OF SIGNIFICANCE: Post-traumatic osteoarthritis (PTOA) begins with the deterioration of subchondral bone and cartilage after acute injuries. In spite of the prevalence of PTOA and its associated financial and psychological burdens, therapeutic measures remain elusive. A number of small molecule drugs are now under investigation to replace FDA-approved palliative measures, including cyclin-dependent kinase 9 (CDK9) inhibitors which work by targeting early inflammatory programming after injury. However, the short half-life of these drugs is a major hurdle to their success. Here, we show that biomaterial encapsulation of Flavopiridol (CDK9 inhibitor) in poly (lactic-co-glycolic acid) microparticles is a promising route for direct delivery and improved drug retention time in the knee joint. Moreover, administration of the flavopiridol microparticles reduced the severity of PTOA.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Materiales Biocompatibles , Cartílago Articular/patología , Quinasa 9 Dependiente de la Ciclina , Flavonoides , Inflamación/patología , Inyecciones Intraarticulares , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Piperidinas , Ratas
9.
Cell Prolif ; 54(6): e13047, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33960555

RESUMEN

OBJECTIVES: Circular RNAs (circRNAs) are noncoding RNAs that compete against other endogenous RNA species, such as microRNAs, and have been implicated in many diseases. In this study, we investigated the role of a new circRNA (circSLC7A2) in osteoarthritis (OA). MATERIALS AND METHODS: The relative expression of circSLC7A2 was significantly lower in OA tissues than it was in matched controls, as shown by real-time quantitative polymerase chain reaction (RT-qPCR). Western blotting, RT-qPCR and immunofluorescence experiments were employed to evaluate the roles of circSLC7A2, miR-4498 and TIMP3. The in vivo role and mechanism of circSLC7A2 were also conformed in a mouse model. RESULTS: circSLC7A2 was decreased in OA model and the circularization of circSLC7A2 was regulated by FUS. Loss of circSLC7A2 reduced the sponge of miR-4498 and further inhibited the expression of TIMP3, subsequently leading to an inflammatory response. We further determined that miR-4498 inhibitor reversed circSLC7A2-knockdown-induced OA phenotypes. Intra-articular injection of circSLC7A2 alleviated in vivo OA progression in a mouse model of anterior cruciate ligament transection (ACLT). CONCLUSIONS: The circSLC7A2/miR-4498/TIMP3 axis of chondrocytes catabolism and anabolism plays a critical role in OA development. Our results suggest that circSLC7A2 may serve as a new therapeutic target for osteoarthritis.


Asunto(s)
Osteoartritis/genética , ARN Circular/genética , Inhibidor Tisular de Metaloproteinasa-3/genética , Animales , Apoptosis , Cartílago Articular/metabolismo , Cartílago Articular/patología , Regulación hacia Abajo , Regulación de la Expresión Génica , Humanos , Ratones , MicroARNs/genética , Osteoartritis/patología , ARN Circular/análisis , Inhibidor Tisular de Metaloproteinasa-3/análisis
10.
Front Cell Dev Biol ; 8: 579658, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33015073

RESUMEN

Intervertebral disk degeneration (IVDD) is a spinal disk condition caused by an inflammatory response induced by various proinflammatory cytokines, such as interleukin (IL)-1ß and tumor necrosis factor (TNF)-α. cyclin-dependent kinase 9 (CDK9) is a transcriptional regulator and potential therapeutic target for many diseases, especially in regulating the activation of primary inflammatory response genes. Our study investigated a highly selective CDK9 inhibitor, atuveciclib, which protects nucleus pulposus (NP) cells from proinflammatory stimuli-induced catabolism. The effects of CDK9 inhibition were determined in human and rat NP cells treated with IL-1ß in the presence or absence of atuveciclib or small interfering RNA target CDK9. Inhibition of CDK9 led to the attenuation of inflammatory response. In addition, rat intervertebral disk (IVD) explants were used to determine the role of CDK9 inhibition in extracellular matrix degradation. The rat IVDD model also proved that CDK9 inhibition attenuated IVDD, as validated using magnetic resonance imaging and immunohistochemistry. Taken together, CDK9 is a potential therapeutic target to prevent IVDD.

11.
J Phys Chem B ; 124(43): 9497-9504, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33052673

RESUMEN

This work reports the first direct observations of binding and complex formation between transforming growth factor beta 1 (TGF-ß1) and cartilage oligomeric matrix protein (COMP) using high-resolution atomic force microscopy (AFM). Each COMP molecule consists of pentamers whose five identical monomeric units bundle at N-termini. From this central point, the five monomers' flexible arms extend outward with C-terminal domains at the distal ends, forming a bouquet-like structure. In commonly used buffer solutions, TGF-ß1 molecules typically form homodimers (majority), double dimers (minority), and aggregates (trace amount). Mixing TGF-ß1 and COMP leads to rapid binding and complex formation. The TGF-ß1/COMP complexes contain one to three COMP and multiple TGF-ß1 molecules. For complexes with one COMP, the structure is more compact and less flexible than that of COMP alone. For complexes with two or more COMP molecules, the conformation varies to a large degree from one complex to another. This is attributed to the presence of double dimers or aggregates of TGF-ß1 molecules, whose size and multiple binding sites enable binding to more than one COMP. The number and location of individual TGF-ß1 dimers are also clearly visible in all complexes. This molecular-level information provides a new insight into the mechanism of chondrogenesis enhancement by TGF-ß1/COMP complexes, i.e., simultaneous and multivalent presentation of growth factors. These presentations help explain the high efficacy in sustained activation of the signaling pathway to augment chondrogenesis.


Asunto(s)
Transducción de Señal , Factor de Crecimiento Transformador beta1 , Sitios de Unión , Proteína de la Matriz Oligomérica del Cartílago , Microscopía de Fuerza Atómica
12.
J Orthop Res ; 37(11): 2429-2436, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31304988

RESUMEN

Knee injuries cause structural damage and acute inflammation that initiates the development of post-traumatic osteoarthritis (PTOA). NADPH oxidase 4 (Nox4), a member of a family of enzymes that generates reactive oxygen species (ROS), plays a pivotal role in normal development of the musculoskeletal system, but may increase ROS production to harmful levels after joint injury. The role of ROS in both normal joint homeostasis and injury is poorly understood, but inhibition of excessive ROS production by Nox4 after joint injury could be protective to the joint, decreasing oxidative stress, and initiation of PTOA. Knee injuries were simulated using inflammatory cytokines in cultured primary human chondrocytes and a non-invasive mouse model of PTOA in C57BL/6N and Nox4 knockout mice. There is an acute decrease in Nox4 activity within 24 h after injury in both systems, followed by a subsequent sustained low-level increase, a novel finding not seen in any other system. Inhibition of Nox4 activity by GKT137831 was protective against early structural changes after non-invasive knee injury in a mouse model. Nox4 knockout mice had significant differences in structural and mechanical properties of bone, providing further evidence for the role of Nox4 in development of joint tissues and biochemical response after joint injury. Nox4 plays a significant role in the acute phase after joint injury, and targeted inhibition of inflammation caused by Nox4 may be protective against early joint changes in the pathogenesis of PTOA. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2429-2436, 2019.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/complicaciones , Condrocitos/enzimología , NADPH Oxidasa 4/metabolismo , Osteoartritis de la Rodilla/enzimología , Pirazoles/uso terapéutico , Piridinas/uso terapéutico , Adolescente , Adulto , Animales , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones Noqueados , Persona de Mediana Edad , NADPH Oxidasa 4/antagonistas & inhibidores , NADPH Oxidasa 4/genética , Osteoartritis de la Rodilla/etiología , Osteoartritis de la Rodilla/prevención & control , Cultivo Primario de Células , Pirazoles/farmacología , Pirazolonas , Piridinas/farmacología , Piridonas , Adulto Joven
13.
J Phys Chem B ; 123(1): 39-46, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30554512

RESUMEN

This work presents the first direct evidence of multivalent binding between bone morphogenetic protein-2 (BMP-2) and cartilage oligomeric matrix protein (COMP) using high-resolution atomic force microscopy (AFM) imaging. AFM topographic images reveal the molecular morphology of COMP, a pentameric protein whose five identical monomer units bundle together at N-termini, extending out with flexible chains to C-termini. Upon addition of BMP-2, COMP molecules undergo conformational changes at the C-termini to enable binding with BMP-2 molecules. AFM enables local structural changes of COMP to be revealed upon binding various numbers, 1-5, of BMP-2 molecules. These BMP-2/COMP complexes exhibit very different morphologies from those of COMP: much more compact and thus less flexible. These molecular-level insights deepen current understanding of the mechanism of how the BMP-2/COMP complex enhances osteogenesis among osteoprogenitor cells, i.e., multivalent presentation of BMP-2 via the stable and relatively rigid BMP-2/COMP complex could form a lattice of interaction between multiple BMP-2 and BMP-2 receptors. These ligand-receptor clusters lead to fast initiation and sustained activation of the Smad signaling pathway, resulting in enhanced osteogenesis. This work is also of translational importance as the outcome may enable use of lower BMP-2 dosage for bone repair and regeneration.


Asunto(s)
Proteína Morfogenética Ósea 2/química , Proteína de la Matriz Oligomérica del Cartílago/química , Animales , Células Cultivadas , Células HEK293 , Humanos , Ratones , Microscopía de Fuerza Atómica , Unión Proteica , Conformación Proteica
14.
Front Pharmacol ; 9: 174, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29773986

RESUMEN

Bone resorption and homeostasis is carried out by osteoclasts, whose differentiation and activity are regulated by the RANK/RANKL axis. Our previous studies using a mouse model of joint injury show that joint trauma induces local inflammation followed by bone remodeling. The transcription factor cyclin-dependent kinase 9 (CDK9) is the major regulator of inflammation, as CDK9 inhibitor flavopiridol effectively suppress injury-induced inflammatory response. The objective of this study was to investigate the underlying mechanism through which flavopiridol regulates bone resorption. The effects of CDK9 inhibition, by the specific-inhibitor flavopiridol, on bone resorption were determined in vivo using two distinct and clinically relevant bone remodeling models. The first model involved titanium particle-induced acute osteolysis, and the second model was ovariectomy-induced chronic osteoporosis. The effects and mechanism of CDK9 inhibition on osteoclastogenesis were examined using in vitro culture of bone marrow macrophages (BMMs). Our results indicated that flavopiridol potently suppressed bone resorption in both in vivo bone-remodeling models. In addition, CDK9 inhibition suppressed in vitro osteoclastogenesis of BMM and reduced their expression of osteoclast-specific genes. Finally, we determined that flavopiridol suppressed RANKL signaling pathway via inhibition of p65 phosphorylation and nuclear translocation of NF-κB. Summary, CDK9 is a potential therapeutic target to prevent osteolysis and osteoporosis by flavopiridol treatment.

15.
Biochem Biophys Res Commun ; 460(3): 741-6, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25817731

RESUMEN

Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically.


Asunto(s)
Cartílago/enzimología , Traumatismos de la Rodilla/enzimología , Metaloproteinasas de la Matriz/metabolismo , Animales , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Matrix Biol ; 37: 102-11, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24997222

RESUMEN

Thrombospondins (TSPs) are widely known as a family of five calcium-binding matricellular proteins. While these proteins belong to the same family, they are encoded by different genes, regulate different cellular functions and are localized to specific regions of the body. TSP-5 or Cartilage Oligomeric Matrix Protein (COMP) is the only TSP that has been associated with skeletal disorders in humans, including pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). The pentameric structure of COMP, the evidence that it interacts with multiple cellular proteins, and the recent reports of COMP acting as a 'lattice' to present growth factors to cells, inspired this review of COMP and its interacting partners. In our review, we have compiled the interactions of COMP with other proteins in the cartilage extracellular matrix and summarized their importance in maintaining the structural integrity of cartilage as well as in regulating cellular functions.


Asunto(s)
Proteína de la Matriz Oligomérica del Cartílago/metabolismo , Condrogénesis/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Anomalías Musculoesqueléticas/metabolismo , Humanos , Modelos Biológicos , Anomalías Musculoesqueléticas/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína
18.
Biomed Res Int ; 2014: 232870, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24592384

RESUMEN

Bromodomain-containing protein 4 (Brd4) and hexamethylene bisacetamide (HMBA) inducible protein 1 (HEXIM1) are two opposing regulators of the positive transcription elongation factor b (P-TEFb), which is the master modulator of RNA polymerase II during transcriptional elongation. While Brd4 recruits P-TEFb to promoter-proximal chromatins to activate transcription, HEXIM1 sequesters P-TEFb into an inactive complex containing the 7SK small nuclear RNA. Besides regulating P-TEFb's transcriptional activity, recent evidence demonstrates that both Brd4 and HEXIM1 also play novel roles in cell cycle progression and tumorigenesis. Here we will discuss the current knowledge on Brd4 and HEXIM1 and their implication as novel therapeutic options against cancer.


Asunto(s)
Neoplasias/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Factores de Transcripción/química
19.
Arthritis Rheumatol ; 66(6): 1537-46, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24470357

RESUMEN

OBJECTIVE: Cyclin-dependent kinase 9 (CDK-9) controls the activation of primary inflammatory response genes. The purpose of this study was to determine whether CDK-9 inhibition protects cartilage from the catabolic effects of proinflammatory cytokines. METHODS: Human chondrocytes were challenged with different proinflammatory stimuli (interleukin-1ß [IL-1ß], lipopolysaccharides, and tumor necrosis factor α) in the presence or absence of either the CDK-9 inhibitor flavopiridol or small interfering RNA (siRNA). The expression of messenger RNA (mRNA) for inflammatory mediator genes, catabolic genes, and anabolic genes were determined by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Cartilage explants were incubated for 6 days with IL-1ß in the presence or absence of flavopiridol. Cartilage matrix degradation was assessed by the release of glycosaminoglycan (GAG) and cleaved type II collagen (COL2A) peptides. RESULTS: CDK-9 inhibition by flavopiridol or knockdown by siRNA effectively suppressed the induction of mRNA for inducible nitric oxide synthase by all 3 proinflammatory stimuli. Results from NF-κB-targeted PCR array analysis showed that flavopiridol suppressed IL-1ß induction of a broad range of inflammatory mediator genes (59 of 67 tested). CDK-9 inhibition also suppressed the induction of catabolic genes (matrix metalloproteinase 1 [MMP-1], MMP-3, MMP-9, MMP-13, ADAMTS-4, and ADAMTS-5), but did not affect the basal expression of anabolic genes (COL2A, aggrecan, and cartilage oligomeric matrix protein) and housekeeping genes. Flavopiridol had no apparent short-term cytotoxicity, as assessed by G6PDH activity. Finally, in IL-1ß-treated cartilage explants, flavopiridol reduced the release of the matrix degradation product GAG and cleaved COL2A peptides, but did not affect long-term chondrocyte viability. CONCLUSION: CDK-9 activity is required for the primary inflammatory response in chondrocytes. Flavopiridol suppresses the induction of inflammatory mediator genes and catabolic genes to protect cartilage from the deleterious effects of proinflammatory cytokines, without affecting cell viability and functions.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Citocinas/farmacología , Flavonoides/farmacología , Inflamación/prevención & control , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas ADAM/metabolismo , Proteína ADAMTS4 , Proteína ADAMTS5 , Adulto , Anciano , Anciano de 80 o más Años , Cartílago Articular/metabolismo , Cartílago Articular/patología , Células Cultivadas , Condrocitos/metabolismo , Condrocitos/patología , Colágeno Tipo II/metabolismo , Quinasa 9 Dependiente de la Ciclina/efectos de los fármacos , Glicosaminoglicanos/metabolismo , Humanos , Técnicas In Vitro , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/farmacología , Lipopolisacáridos/farmacología , Metaloproteinasas de la Matriz/metabolismo , Persona de Mediana Edad , Procolágeno N-Endopeptidasa/metabolismo , ARN Interferente Pequeño/farmacología , Factor de Necrosis Tumoral alfa/farmacología
20.
Bone ; 55(1): 23-35, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23528838

RESUMEN

Bone morphogenetic proteins (BMPs) are effective for bone regeneration, and are used clinically. However, supraphysiological doses are required, which limits their use. Cartilage oligomeric matrix protein is an extracellular matrix protein, which we have previously shown can bind to growth factors of the TGFs family, suggesting that COMP may also bind to BMP-2. Rather than being a passive component of the matrix, COMP may serve as an "instructive matrix" component capable of increasing local growth factor concentration, slowing the diffusion of growth factors, and promoting their biological activity. The purpose of this investigation was to determine whether COMP binds to BMP-2, and whether it promotes the biological activity of BMP-2 with respect to osteogenesis. We found that COMP binds BMP-2, and characterized the biochemical nature of the binding interaction. COMP binding enhanced BMP-2-induced intracellular signaling through Smad proteins, increased the levels of BMP receptors, and up-regulated the luciferase activity from a BMP-2-responsive reporter construct. COMP binding enhanced BMP-2-dependent osteogenesis in vitro, in the C2C12 cell line and in primary human bone mesenchymal stem cells, as measured by alkaline phosphatase activity, matrix mineralization, and gene expression. Finally, we found that COMP enhanced BMP-2-dependent ectopic bone formation in a rat model assessed histologically, by alkaline phosphatase activity, gene expression, and micro-CT. In summary, this study demonstrates that COMP enhances the osteogenic activity of BMP-2, both in-vitro and in-vivo.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Proteínas Matrilinas/metabolismo , Osteogénesis , Animales , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Cationes/farmacología , Línea Celular , Coristoma/metabolismo , Coristoma/patología , Modelos Animales de Enfermedad , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Luciferasas/metabolismo , Manganeso/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Osteogénesis/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Transcripción Genética/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...