Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Struct Mol Biol ; 30(8): 1193-1206, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37580627

RESUMEN

The nuclear folding of chromosomes relative to nuclear bodies is an integral part of gene function. Here, we demonstrate that population-based modeling-from ensemble Hi-C data-provides a detailed description of the nuclear microenvironment of genes and its role in gene function. We define the microenvironment by the subnuclear positions of genomic regions with respect to nuclear bodies, local chromatin compaction, and preferences in chromatin compartmentalization. These structural descriptors are determined in single-cell models, thereby revealing the structural variability between cells. We demonstrate that the microenvironment of a genomic region is linked to its functional potential in gene transcription, replication, and chromatin compartmentalization. Some chromatin regions feature a strong preference for a single microenvironment, due to association with specific nuclear bodies in most cells. Other chromatin shows high structural variability, which is a strong indicator of functional heterogeneity. Moreover, we identify specialized nuclear microenvironments, which distinguish chromatin in different functional states and reveal a key role of nuclear speckles in chromosome organization. We demonstrate that our method produces highly predictive three-dimensional genome structures, which accurately reproduce data from a variety of orthogonal experiments, thus considerably expanding the range of Hi-C data analysis.


Asunto(s)
Núcleo Celular , Cromatina , Núcleo Celular/genética , Núcleo Celular/química , Cromatina/genética , Cromosomas/genética , Genoma
3.
bioRxiv ; 2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36824908

RESUMEN

The 3D conformations of chromosomes are highly variant and stochastic between single cells. Recent progress in multiplexed 3D FISH imaging, single cell Hi-C and genome structure modeling allows a closer analysis of the structural variations of chromosomes between cells to infer the functional implications of structural heterogeneity. Here, we introduce a two-step dimensionality reduction method to classify a population of single cell 3D chromosome structures, either from simulation or imaging experiment, into dominant conformational clusters with distinct chromosome morphologies. We found that almost half of all structures for each chromosome can be described by 5-10 dominant chromosome morphologies, which play a fundamental role in establishing conformational variation of chromosomes. These morphologies are conserved in different cell types, but vary in their relative proportion of structures. Chromosome morphologies are distinguished by the presence or absence of characteristic chromosome territory domains, which expose some chromosomal regions to varying nuclear environments in different morphologies, such as nuclear positions and associations to nuclear speckles, lamina, and nucleoli. These observations point to distinct functional variations for the same chromosomal region in different chromosome morphologies. We validated chromosome conformational clusters and their associated subnuclear locations with data from DNA-MERFISH imaging and single cell sci-HiC data. Our method provides an important approach to assess the variation of chromosome structures between cells and link differences in conformational states with distinct gene functions.

4.
Chem Biodivers ; 20(1): e202200872, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36594615

RESUMEN

Breast cancer is known as the most common type of invasive cancer in women. It is well-known that phenolic compounds play an important role in the treatment of this disease. This study hypothesized that isoeugenol based two polyphenolic compounds 1 and 2 exerts its anti-proliferative effects through the induction of apoptosis and cell migration arrest on human breast cancer cell. Based on this hypothesis, the study aimed to investigate the anti-proliferative, anti-migrative effects of these compounds and their possible basic molecular mechanisms of action in MCF-7 cell lines. As a result, isoeugenol-based compounds 1 and 2 showed anti-proliferative, anti-apoptotic and anti-migrative effects in MCF-7 breast cancer cells. This result was supported by molecular analyzes and it was determined that there were changes in the expression of some gene regions involved in apoptosis and migration. Additionally, it was a remarkable result that cell viability inhibition did not occur in healthy breast tissue cells and no cytotoxic effect was observed. The existence of such a differentiation between cancer cells and healthy cells significantly increases the potential of these compounds to be used as chemotherapeutic drug active ingredients without side effects.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Células MCF-7 , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular , Polifenoles/farmacología , Detección Precoz del Cáncer , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral
5.
Bioorg Chem ; 130: 106230, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375352

RESUMEN

Colorectal cancer is a type of cancer encountered worldwide and ranks third among all cancer types in terms of incidence. Polyphenols have been shown to have a wide range of biological functions, including a significant impact on cancer start, development, and promotion through regulating many signaling pathways. The aim of this study was to investigate the anticancer effects of isoeugenol based compounds 1, 2 on HT29 colorectal cancer cell line in vitro. MTT test and scratch assay were carried out to determine the effect of these compounds on HT29 cell proliferation and migration respectively. In addition, mRNA expression levels of apoptosis and metastasis-related genes (p53, Bcl2, Bax, Caspase 3, Caspase7, Caspase8, Caspase9, HIF1-α, VEGF, MMP-2, MMP-9) were examined by quantitative real-time PCR. The results indicated that 1 and 2 inhibited HT29 cell proliferation and induced apoptosis by increasing the Bax/Bcl2 ratio and Caspase-9 and Caspase-3 mRNA expression. In conclusion, the results of this study showed that the treatment of these compounds significantly suppressed the mRNA expressions of metastasis-related genes such as Matrix Metalloproteinase-2, Matrix Metalloproteinase-9, Vascular Endothelial Growth Factor and Hypoxia­Inducible Factor 1α.


Asunto(s)
Neoplasias del Colon , Metaloproteinasa 2 de la Matriz , Humanos , Proteína X Asociada a bcl-2/metabolismo , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Fenoles/química , Fenoles/farmacología , ARN Mensajero , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/farmacología , Eugenol/análogos & derivados , Eugenol/química , Eugenol/farmacología , Inhibición de Migración Celular/efectos de los fármacos
6.
J Lipid Res ; 63(10): 100279, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36100091

RESUMEN

The unfolded protein response (UPR) is an elaborate signaling network that evolved to maintain proteostasis in the endoplasmic reticulum (ER) and mitochondria (mt). These organelles are functionally and physically associated, and consequently, their stress responses are often intertwined. It is unclear how these two adaptive stress responses are coordinated during ER stress. The inositol-requiring enzyme-1 (IRE1), a central ER stress sensor and proximal regulator of the UPRER, harbors dual kinase and endoribonuclease (RNase) activities. IRE1 RNase activity initiates the transcriptional layer of the UPRER, but IRE1's kinase substrate(s) and their functions are largely unknown. Here, we discovered that sphingosine 1-phosphate (S1P) lyase (SPL), the enzyme that degrades S1P, is a substrate for the mammalian IRE1 kinase. Our data show that IRE1-dependent SPL phosphorylation inhibits SPL's enzymatic activity, resulting in increased intracellular S1P levels. S1P has previously been shown to induce the activation of mitochondrial UPR (UPRmt) in nematodes. We determined that IRE1 kinase-dependent S1P induction during ER stress potentiates UPRmt signaling in mammalian cells. Phosphorylation of eukaryotic translation initiation factor 2α (eif2α) is recognized as a critical molecular event for UPRmt activation in mammalian cells. Our data further demonstrate that inhibition of the IRE1-SPL axis abrogates the activation of two eif2α kinases, namely double-stranded RNA-activated protein kinase (PKR) and PKR-like ER kinase upon ER stress. These findings show that the IRE1-SPL axis plays a central role in coordinating the adaptive responses of ER and mitochondria to ER stress in mammalian cells.


Asunto(s)
ARN Bicatenario , Respuesta de Proteína Desplegada , Animales , Fosforilación , Endorribonucleasas/genética , Estrés del Retículo Endoplásmico , Proteínas Serina-Treonina Quinasas/genética , Aldehído-Liasas/metabolismo , Ribonucleasas/metabolismo , Inositol , Mamíferos/metabolismo
7.
Nat Commun ; 13(1): 5566, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175411

RESUMEN

Early cancer detection by cell-free DNA faces multiple challenges: low fraction of tumor cell-free DNA, molecular heterogeneity of cancer, and sample sizes that are not sufficient to reflect diverse patient populations. Here, we develop a cancer detection approach to address these challenges. It consists of an assay, cfMethyl-Seq, for cost-effective sequencing of the cell-free DNA methylome (with > 12-fold enrichment over whole genome bisulfite sequencing in CpG islands), and a computational method to extract methylation information and diagnose patients. Applying our approach to 408 colon, liver, lung, and stomach cancer patients and controls, at 97.9% specificity we achieve 80.7% and 74.5% sensitivity in detecting all-stage and early-stage cancer, and 89.1% and 85.0% accuracy for locating tissue-of-origin of all-stage and early-stage cancer, respectively. Our approach cost-effectively retains methylome profiles of cancer abnormalities, allowing us to learn new features and expand to other cancer types as training cohorts grow.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Gástricas , Ácidos Nucleicos Libres de Células/genética , Análisis Costo-Beneficio , Detección Precoz del Cáncer , Epigenoma , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética
8.
Plant J ; 112(2): 352-368, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35986497

RESUMEN

Chromatin modifications are epigenetic regulatory features with major roles in various cellular events, yet they remain understudied in algae. We interrogated the genome-wide distribution pattern of mono- and trimethylated histone H3 lysine 4 (H3K4) using chromatin-immunoprecipitation followed by deep-sequencing (ChIP-seq) during key phases of the Chlamydomonas cell cycle: early G1 phase, Zeitgeber Time 1 (ZT1), when cells initiate biomass accumulation, S/M phase (ZT13) when cells are replicating DNA and undergoing mitosis, and late G0 phase (ZT23) when they are quiescent. Tri-methylated H3K4 was predominantly enriched at transcription start sites of the majority of protein coding genes (85%). The likelihood of a gene being marked by H3K4me3 correlated with it being transcribed at some point during the life cycle but not necessarily by continuous active transcription, as exemplified by early zygotic genes, which may remain transcriptionally dormant for thousands of generations between sexual cycles. The exceptions to this rule were around 120 loci, some of which encode non-poly-adenylated transcripts, such as small nuclear RNAs and replication-dependent histones that had H3K4me3 peaks only when they were being transcribed. Mono-methylated H3K4 was the default state for the vast majority of histones that were bound outside of transcription start sites and terminator regions of genes. A small fraction of the genome that was depleted of any H3 lysine 4 methylation was enriched for DNA cytosine methylation and the genes within these DNA methylation islands were poorly expressed. Besides marking protein coding genes, H3K4me3 ChIP-seq data served also as a annotation tool for validation of hundreds of long non-coding RNA genes.


Asunto(s)
Chlamydomonas , ARN Largo no Codificante , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Chlamydomonas/genética , Chlamydomonas/metabolismo , ARN Largo no Codificante/metabolismo , Metilación de ADN/genética , Cromatina/genética , Citosina
9.
Nat Methods ; 19(8): 938-949, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35817938

RESUMEN

A multitude of sequencing-based and microscopy technologies provide the means to unravel the relationship between the three-dimensional organization of genomes and key regulatory processes of genome function. Here, we develop a multimodal data integration approach to produce populations of single-cell genome structures that are highly predictive for nuclear locations of genes and nuclear bodies, local chromatin compaction and spatial segregation of functionally related chromatin. We demonstrate that multimodal data integration can compensate for systematic errors in some of the data and can greatly increase accuracy and coverage of genome structure models. We also show that alternative combinations of different orthogonal data sources can converge to models with similar predictive power. Moreover, our study reveals the key contributions of low-frequency ('rare') interchromosomal contacts to accurately predicting the global nuclear architecture, including the positioning of genes and chromosomes. Overall, our results highlight the benefits of multimodal data integration for genome structure analysis, available through the Integrative Genome Modeling software package.


Asunto(s)
Cromatina , Cromosomas , Núcleo Celular , Cromatina/genética , Cromosomas/genética , Genoma
10.
J Biol Chem ; 298(7): 102050, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35598827

RESUMEN

The double-stranded RNA-dependent protein kinase activating protein (PACT), an RNA-binding protein that is part of the RNA-induced silencing complex, plays a key role in miR-mediated translational repression. Previous studies showed that PACT regulates the expression of various miRs, selects the miR strand to be loaded onto RNA-induced silencing complex, and determines proper miR length. Apart from PACT's role in mediating the antiviral response in immune cells, what PACT does in other cell types is unknown. Strikingly, it has also been shown that cold exposure leads to marked downregulation of PACT protein in mouse brown adipose tissue (BAT), where mitochondrial biogenesis and metabolism play a central role. Here, we show that PACT establishes a posttranscriptional brake on mitochondrial biogenesis (mitobiogenesis) by promoting the maturation of miR-181c, a key suppressor of mitobiogenesis that has been shown to target mitochondrial complex IV subunit I (Mtco1) and sirtuin 1 (Sirt1). Consistently, we found that a partial reduction in PACT expression is sufficient to enhance mitobiogenesis in brown adipocytes in culture as well as during BAT activation in mice. In conclusion, we demonstrate an unexpected role for PACT in the regulation of mitochondrial biogenesis and energetics in cells and BAT.


Asunto(s)
Tejido Adiposo Pardo , MicroARNs , Mitocondrias , Biogénesis de Organelos , Proteínas de Unión al ARN , Tejido Adiposo Pardo/metabolismo , Animales , Complejo I de Transporte de Electrón/metabolismo , Ratones , MicroARNs/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo
11.
Chem Biodivers ; 19(4): e202100854, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35266298

RESUMEN

In this research, the effect of synthesized polyphenolic compounds 4 and 5 at the cellular and molecular levels was examined. Within this framework, related substances effects on prostate cell (PC3) viability were evaluated by MTT analysis, and their effects on migration were examined by in vitro scratch analysis. Additionally, mRNA expression levels of gene regions known to be associated with metastasis and apoptosis were determined by real-time quantitative PCR. DNA binding researches have also been carried out to determine the DNA compound interactions. As a consequence, it was determined that 4 and 5 obstructed the PC3 cell viability in a manner that is dose- and time-dependent. The IC50 dose of 4 and 5 in PC3 cell was found to be 60.14 µM, 15.51 µM for 48 h, respectively. 4 and 5 substances showed suppressive effect on migration of PC3 cancer cells in the in vitro scratch model created at IC50 concentrations. Compared to the negative control, PC3 cancer cells treated with 4 and 5 showed 24 % and 46 % closure, respectively, at the wound site at 48 h. 4 and 5 compounds were treated at IC50 concentrations with PC3 cancer cells for 48 h, and then the effects of both compounds on the gene expression, that have been linked to metastasis and apoptosis, at the mRNA level were evaluated. It was determined that 4 decreased the expression of the HIF1-α gene 294 times and 5 decreased the expression of the said gene 30 times. In addition, both 4 and 5 were able to significantly increase the Bax/Bcl-2 mRNA expression ratio (32.65 and 10.46 fold, P<0.0001) in PC3 cells as compared to untreated cells after 48 h. Finally, when DNA binding analysis results were evaluated, it was determined that both polyphenolic compounds did not bind to DNA at the tested time and concentrations and did not cause DNA breaks.


Asunto(s)
Neoplasias de la Próstata , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Eugenol/análogos & derivados , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , ARN Mensajero/genética
12.
JCI Insight ; 7(6)2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35167493

RESUMEN

Kawasaki disease (KD) is the leading cause of noncongenital heart disease in children. Studies in mice and humans propound the NLRP3/IL-1ß pathway as the principal driver of KD pathophysiology. Endoplasmic reticulum (ER) stress can activate the NLRP3 inflammasome, but the potential implication of ER stress in KD pathophysiology has not been investigated to our knowledge. We used human patient data and the Lactobacillus casei cell wall extract (LCWE) murine model of KD vasculitis to characterize the impact of ER stress on the development of cardiovascular lesions. KD patient transcriptomics and single-cell RNA sequencing of the abdominal aorta from LCWE-injected mice revealed changes in the expression of ER stress genes. Alleviating ER stress genetically, by conditional deletion of inositol-requiring enzyme 1 (IRE1) in myeloid cells, or pharmacologically, by inhibition of IRE1 endoribonuclease (RNase) activity, led to significant reduction of LCWE-induced cardiovascular lesion formation as well as reduced caspase-1 activity and IL-1ß secretion. These results demonstrate the causal relationship of ER stress to KD pathogenesis and highlight IRE1 RNase activity as a potential new therapeutic target.


Asunto(s)
Lacticaseibacillus casei , Síndrome Mucocutáneo Linfonodular , Vasculitis , Animales , Modelos Animales de Enfermedad , Endorribonucleasas/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Síndrome Mucocutáneo Linfonodular/tratamiento farmacológico , Síndrome Mucocutáneo Linfonodular/patología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteínas Serina-Treonina Quinasas/genética , Ribonucleasas
13.
Artículo en Inglés | MEDLINE | ID: mdl-34400556

RESUMEN

Our understanding of how genomic DNA is tightly packed inside the nucleus, yet is still accessible for vital cellular processes, has grown dramatically over recent years with advances in microscopy and genomics technologies. Computational methods have played a pivotal role in the structural interpretation of experimental data, which helped unravel some organizational principles of genome folding. Here, we give an overview of current computational efforts in mechanistic and data-driven 3D chromatin structure modeling. We discuss strengths and limitations of different methods and evaluate the added value and benefits of computational approaches to infer the 3D structural and dynamic properties of the genome and its underlying mechanisms at different scales and resolution, ranging from the dynamic formation of chromatin loops and topological associated domains to nuclear compartmentalization of chromatin and nuclear bodies.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina , Núcleo Celular , Cromosomas , Genoma
14.
Structure ; 30(1): 24-36, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34963059

RESUMEN

New technological advances in integrated imaging, sequencing-based assays, and computational analysis have revolutionized our view of genomes in terms of their structure and dynamics in space and time. These advances promise a deeper understanding of genome functions and mechanistic insights into how the nucleus is spatially organized and functions. These wide arrays of complementary data provide an opportunity to produce quantitative integrative models of nuclear organization. In this article, we highlight recent key developments and discuss the outlook for these fields.


Asunto(s)
Núcleo Celular/genética , Cromosomas Humanos/química , Núcleo Celular/química , Genoma Humano , Humanos , Modelos Moleculares , Conformación Molecular
15.
Mediterr J Hematol Infect Dis ; 13(1): e2021009, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33489048

RESUMEN

BACKGROUND: Data about the morphological changes in peripheral blood smears during COVID-19 infection and their clinical severity association are limited. We aimed to examine the characteristics of the cells detected in the pathological rate and/or appearance and whether these findings are related to the clinical course by evaluating the peripheral blood smear at the time of diagnosis in COVID-19 patients. METHODS: Clinical features, laboratory data, peripheral blood smear of fifty patients diagnosed with COVID-19 by PCR was evaluated at diagnosis. Peripheral smear samples of the patients were compared with the age and sex-matched 30 healthy controls. Pictures were taken from the patient's peripheral blood smear. Patients were divided into two groups. Mild and severe stage patient groups were compared in terms of laboratory data and peripheral smear findings. The relationship between the laboratory values of all patients and the duration of hospitalization was analyzed. RESULTS: The number of segmented neutrophils and eosinophils were low, pseudo-Pelger-Huet, pseudo-Pelger-Huet/mature lymphocyte ratio, atypical lymphocytes, monocytes with vacuoles, bands, and pyknotic neutrophils rates were higher in the peripheral blood smear of the patient group (p <0.05). Increased pseudo-Pelger-Huet anomaly, pseudo-Pelger Huet/mature lymphocyte ratio, a decreased number of mature lymphocytes, and eosinophils in peripheral blood smear were observed in the severe stage patients (p <0.05). A negative correlation was observed between hospitalization duration and mature lymphocyte and monocytes with vacuoles rates (p <0.05). CONCLUSION: A peripheral blood smear is an inexpensive, easily performed, and rapid test. Increased Pseudo-Pelger-Huet anomaly/mature lymphocyte rate suggests a severe stage disease, while high initial mature lymphocyte and monocytes with vacuoles rates at the time of diagnosis may be an indicator of shortened duration of hospitalization.

16.
Mol Metab ; 28: 58-72, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31422082

RESUMEN

OBJECTIVE: Saturated and trans fat consumption is associated with increased cardiovascular disease (CVD) risk. Current dietary guidelines recommend low fat and significantly reduced trans fat intake. Full fat dairy can worsen dyslipidemia, but recent epidemiological studies show full-fat dairy consumption may reduce diabetes and CVD risk. This dairy paradox prompted a reassessment of the dietary guidelines. The beneficial metabolic effects in dairy have been claimed for a ruminant-derived, trans fatty acid, trans-C16:1n-7 or trans-palmitoleate (trans-PAO). A close relative, cis-PAO, is produced by de novo lipogenesis and mediates inter-organ crosstalk, improving insulin-sensitivity and alleviating atherosclerosis in mice. These findings suggest trans-PAO may be a useful substitute for full fat dairy, but a metabolic function for trans-PAO has not been shown to date. METHODS: Using lipidomics, we directly investigated trans-PAO's impact on plasma and tissue lipid profiles in a hypercholesterolemic atherosclerosis mouse model. Furthermore, we investigated trans-PAO's impact on hyperlipidemia-induced inflammation and atherosclerosis progression in these mice. RESULTS: Oral trans-PAO supplementation led to significant incorporation of trans-PAO into major lipid species in plasma and tissues. Unlike cis-PAO, however, trans-PAO did not prevent organelle stress and inflammation in macrophages or atherosclerosis progression in mice. CONCLUSIONS: A significant, inverse correlation between circulating trans-PAO levels and diabetes incidence and cardiovascular mortality has been reported. Our findings show that trans-PAO can incorporate efficiently into the same pools that its cis counterpart is known to incorporate into. However, we found trans-PAO's anti-inflammatory and anti-atherosclerotic effects are muted due to its different structure from cis-PAO.


Asunto(s)
Aterosclerosis/prevención & control , Ácidos Grasos Monoinsaturados/química , Ácidos Grasos Monoinsaturados/farmacología , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Células Cultivadas , Masculino , Ratones , Ratones Noqueados
17.
J Am Coll Cardiol ; 73(10): 1149-1169, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30871699

RESUMEN

BACKGROUND: Eukaryotic cells can respond to diverse stimuli by converging at serine-51 phosphorylation on eukaryotic initiation factor 2 alpha (eIF2α) and activate the integrated stress response (ISR). This is a key step in translational control and must be tightly regulated; however, persistent eIF2α phosphorylation is observed in mouse and human atheroma. OBJECTIVES: Potent ISR inhibitors that modulate neurodegenerative disorders have been identified. Here, the authors evaluated the potential benefits of intercepting ISR in a chronic metabolic and inflammatory disease, atherosclerosis. METHODS: The authors investigated ISR's role in lipid-induced inflammasome activation and atherogenesis by taking advantage of 3 different small molecules and the ATP-analog sensitive kinase allele technology to intercept ISR at multiple molecular nodes. RESULTS: The results show lipid-activated eIF2α signaling induces a mitochondrial protease, Lon protease 1 (LONP1), that degrades phosphatase and tensin-induced putative kinase 1 and blocks Parkin-mediated mitophagy, resulting in greater mitochondrial oxidative stress, inflammasome activation, and interleukin-1ß secretion in macrophages. Furthermore, ISR inhibitors suppress hyperlipidemia-induced inflammasome activation and inflammation, and reduce atherosclerosis. CONCLUSIONS: These results reveal endoplasmic reticulum controls mitochondrial clearance by activating eIF2α-LONP1 signaling, contributing to an amplified oxidative stress response that triggers robust inflammasome activation and interleukin-1ß secretion by dietary fats. These findings underscore the intricate exchange of information and coordination of both organelles' responses to lipids is important for metabolic health. Modulation of ISR to alleviate organelle stress can prevent inflammasome activation by dietary fats and may be a strategy to reduce lipid-induced inflammation and atherosclerosis.


Asunto(s)
Aterosclerosis/inmunología , Grasas de la Dieta/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Estrés Fisiológico/inmunología , Animales , Retículo Endoplásmico/inmunología , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Mitocondrias/metabolismo , Estrés Oxidativo , Fosforilación , Transducción de Señal
18.
BMC Biophys ; 11: 8, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30555686

RESUMEN

BACKGROUND: Cellular environments are highly crowded with biological macromolecules resulting in frequent non-specific interactions. While the effect of such crowding on protein structure and dynamics has been studied extensively, very little is known how cellular crowding affects the conformational sampling of nucleic acids. RESULTS: The effect of protein crowding on the conformational preferences of DNA (deoxyribonucleic acid) is described from fully atomistic molecular dynamics simulations of systems containing a DNA dodecamer surrounded by protein crowders. From the simulations, it was found that DNA structures prefer to stay in B-like conformations in the presence of the crowders. The preference for B-like conformations results from non-specific interactions of crowder proteins with the DNA sugar-phosphate backbone. Moreover, the simulations suggest that the crowder interactions narrow the conformational sampling to canonical regions of the conformational space. CONCLUSIONS: The overall conclusion is that crowding effects may stabilize the canonical features of DNA that are most important for biological function. The results are complementary to a previous study of DNA in reduced dielectric environments where reduced dielectric environments alone led to a conformational shift towards A-DNA. Such a shift was not observed here suggested that the reduced dielectric response of cellular environments is counteracted by non-specific interactions with protein crowders under in vivo conditions.

19.
Nucleic Acids Res ; 46(8): 3937-3952, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29529244

RESUMEN

High-resolution three-dimensional models of Caulobacter crescentus nucleoid structures were generated via a multi-scale modeling protocol. Models were built as a plectonemically supercoiled circular DNA and by incorporating chromosome conformation capture based data to generate an ensemble of base pair resolution models consistent with the experimental data. Significant structural variability was found with different degrees of bending and twisting but with overall similar topologies and shapes that are consistent with C. crescentus cell dimensions. The models allowed a direct mapping of the genomic sequence onto the three-dimensional nucleoid structures. Distinct spatial distributions were found for several genomic elements such as AT-rich sequence elements where nucleoid associated proteins (NAPs) are likely to bind, promoter sites, and some genes with common cellular functions. These findings shed light on the correlation between the spatial organization of the genome and biological functions.


Asunto(s)
Caulobacter crescentus/genética , Caulobacter crescentus/ultraestructura , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/ultraestructura , Secuencia Rica en At , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , Mapeo Cromosómico , Cromosomas Bacterianos/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/ultraestructura , ADN Superhelicoidal/química , ADN Superhelicoidal/genética , ADN Superhelicoidal/ultraestructura , Genoma Bacteriano , Imagenología Tridimensional , Modelos Genéticos , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas
20.
Sci Transl Med ; 8(358): 358ra126, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-27683551

RESUMEN

De novo lipogenesis (DNL), the conversion of glucose and other substrates to lipids, is often associated with ectopic lipid accumulation, metabolic stress, and insulin resistance, especially in the liver. However, organ-specific DNL can also generate distinct lipids with beneficial metabolic bioactivity, prompting a great interest in their use for the treatment of metabolic diseases. Palmitoleate (PAO), one such bioactive lipid, regulates lipid metabolism in liver and improves glucose utilization in skeletal muscle when it is generated de novo from the obese adipose tissue. We show that PAO treatment evokes an overall lipidomic remodeling of the endoplasmic reticulum (ER) membranes in macrophages and mouse tissues, which is associated with resistance of the ER to hyperlipidemic stress. By preventing ER stress, PAO blocks lipid-induced inflammasome activation in mouse and human macrophages. Chronic PAO supplementation also lowers systemic interleukin-1ß (IL-1ß) and IL-18 concentrations in vivo in hyperlipidemic mice. Moreover, PAO prevents macrophage ER stress and IL-1ß production in atherosclerotic plaques in vivo, resulting in a marked reduction in plaque macrophages and protection against atherosclerosis in mice. These findings demonstrate that oral supplementation with a product of DNL such as PAO can promote membrane remodeling associated with metabolic resilience of intracellular organelles to lipid stress and limit the progression of atherosclerosis. These findings support therapeutic PAO supplementation as a potential preventive approach against complex metabolic and inflammatory diseases such as atherosclerosis, which warrants further studies in humans.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ácidos Grasos Monoinsaturados/uso terapéutico , Inflamasomas/metabolismo , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/metabolismo , Apoptosis/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Membranas Intracelulares/metabolismo , Lípidos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Placa Aterosclerótica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...