Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 8(7)2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261688

RESUMEN

The many functions of phosphoinositides in cytosolic signaling were extensively studied; however, their activities in the cell nucleus are much less clear. In this review, we summarize data about their nuclear localization and metabolism, and review the available literature on their involvements in chromatin remodeling, gene transcription, and RNA processing. We discuss the molecular mechanisms via which nuclear phosphoinositides, in particular phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2), modulate nuclear processes. We focus on PI(4,5)P2's role in the modulation of RNA polymerase I activity, and functions of the nuclear lipid islets-recently described nucleoplasmic PI(4,5)P2-rich compartment involved in RNA polymerase II transcription. In conclusion, the high impact of the phosphoinositide-protein complexes on nuclear organization and genome functions is only now emerging and deserves further thorough studies.


Asunto(s)
Núcleo Celular/metabolismo , Eucariontes/genética , Genoma , Fosfatidilinositol 4,5-Difosfato/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa I/metabolismo , Núcleo Celular/genética , Ensamble y Desensamble de Cromatina , Eucariontes/metabolismo , Unión Proteica/fisiología , Procesamiento Postranscripcional del ARN , Transcripción Genética
2.
J Cell Sci ; 131(8)2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29507116

RESUMEN

This paper describes a novel type of nuclear structure - nuclear lipid islets (NLIs). They are of 40-100 nm with a lipidic interior, and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] molecules comprise a significant part of their surface. Most of NLIs have RNA at the periphery. Consistent with that, RNA is required for their integrity. The NLI periphery is associated with Pol II transcription machinery, including the largest Pol II subunit, transcription factors and NM1 (also known as NMI). The PtdIns(4,5)P2-NM1 interaction is important for Pol II transcription, since NM1 knockdown reduces the Pol II transcription level, and the overexpression of wild-type NM1 [but not NM1 mutated in the PtdIns(4,5)P2-binding site] rescues the transcription. Importantly, Pol II transcription is dependent on NLI integrity, because an enzymatic reduction of the PtdIns(4,5)P2 level results in a decrease of the Pol II transcription level. Furthermore, about half of nascent transcripts localise to NLIs, and transcriptionally active transgene loci preferentially colocalise with NLIs. We hypothesize that NLIs serve as a structural platform that facilitates the formation of Pol II transcription factories, thus participating in the formation of nuclear architecture competent for transcription.


Asunto(s)
Núcleo Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Humanos
3.
Semin Cell Dev Biol ; 59: 2-9, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27321976

RESUMEN

Phosphatidylinositol phosphates (PIPs)1 are membrane lipids with crucial roles during cell morphogenesis, including the establishment of cytoskeletal organization, membrane trafficking, cell polarity, cell-cycle control and signaling. Recent studies in mice (Mus musculus), fruit flies (Drosophila melanogaster) and other organisms have defined germ cell intrinsic requirements for these lipids and their regulatory enzymes in multiple aspects of sperm development. In particular, PIP levels are crucial in germline stem cell maintenance, spermatogonial proliferation and survival, spermatocyte cytokinesis, spermatid polarization, sperm tail formation, nuclear shaping, and production of mature, motile sperm. Here, we briefly review the stages of spermatogenesis and discuss the roles of PIPs and their regulatory enzymes in male germ cell development.


Asunto(s)
Fosfatidilinositoles/metabolismo , Transducción de Señal , Espermatozoides/metabolismo , Animales , Humanos , Masculino , Meiosis , Mitosis , Modelos Biológicos , Espermatogénesis , Espermatozoides/citología
4.
Histochem Cell Biol ; 145(4): 485-96, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26847181

RESUMEN

Phosphoinositides (PIs) are glycerol-based phospholipids containing hydrophilic inositol ring. The inositol ring is mono-, bis-, or tris-phosphorylated yielding seven PIs members. Ample evidence shows that PIs localize both to the cytoplasm and to the nucleus. However, tools for direct visualization of nuclear PIs are limited and many studies thus employ indirect approaches, such as staining of their metabolic enzymes. Since localization and mobility of PIs differ from their metabolic enzymes, these approaches may result in incomplete data. In this paper, we tested commercially available PIs antibodies by light microscopy on fixed cells, tested their specificity using protein-lipid overlay assay and blocking assay, and compared their staining patterns. Additionally, we prepared recombinant PIs-binding domains and tested them on both fixed and live cells by light microscopy. The results provide a useful overview of usability of the tools tested and stress that the selection of adequate tools is critical. Knowing the localization of individual PIs in various functional compartments should enable us to better understand the roles of PIs in the cell nucleus.


Asunto(s)
Nucléolo Celular/química , Fosfatidilinositoles/análisis , Anticuerpos/inmunología , Reacciones Antígeno-Anticuerpo , Nucléolo Celular/metabolismo , Células Cultivadas , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Microscopía Confocal , Microscopía Fluorescente , Fosfatidilinositoles/inmunología , Fosfatidilinositoles/metabolismo
5.
J Cell Sci ; 126(Pt 12): 2730-9, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23591814

RESUMEN

RNA polymerase I (Pol I) transcription is essential for the cell cycle, growth and protein synthesis in eukaryotes. In the present study, we found that phosphatidylinositol 4,5-bisphosphate (PIP2) is a part of the protein complex on the active ribosomal promoter during transcription. PIP2 makes a complex with Pol I and the Pol I transcription factor UBF in the nucleolus. PIP2 depletion reduces Pol I transcription, which can be rescued by the addition of exogenous PIP2. In addition, PIP2 also binds directly to the pre-rRNA processing factor fibrillarin (Fib), and co-localizes with nascent transcripts in the nucleolus. PIP2 binding to UBF and Fib modulates their binding to DNA and RNA, respectively. In conclusion, PIP2 interacts with a subset of Pol I transcription machinery, and promotes Pol I transcription.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Transcripción Genética/genética , Línea Celular Tumoral , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Regiones Promotoras Genéticas/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo
6.
Nucleus ; 4(6): 478-86, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24513678

RESUMEN

To maintain growth and division, cells require a large-scale production of rRNAs which occurs in the nucleolus. Recently, we have shown the interaction of nucleolar phosphatidylinositol 4,5-bisphosphate (PIP2) with proteins involved in rRNA transcription and processing, namely RNA polymerase I (Pol I), UBF, and fibrillarin. Here we extend the study by investigating transcription-related localization of PIP2 in regards to transcription and processing complexes of Pol I. To achieve this, we used either physiological inhibition of transcription during mitosis or inhibition by treatment the cells with actinomycin D (AMD) or 5,6-dichloro-1ß-d-ribofuranosyl-benzimidazole (DRB). We show that PIP2 is associated with Pol I subunits and UBF in a transcription-independent manner. On the other hand, PIP2/fibrillarin colocalization is dependent on the production of rRNA. These results indicate that PIP2 is required not only during rRNA production and biogenesis, as we have shown before, but also plays a structural role as an anchor for the Pol I pre-initiation complex during the cell cycle. We suggest that throughout mitosis, PIP2 together with UBF is involved in forming and maintaining the core platform of the rDNA helix structure. Thus we introduce PIP2 as a novel component of the NOR complex, which is further engaged in the renewed rRNA synthesis upon exit from mitosis.


Asunto(s)
Nucléolo Celular/metabolismo , Región Organizadora del Nucléolo/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Polimerasa I/metabolismo , Ciclo Celular , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , ADN Ribosómico , Células HeLa , Humanos , Mitosis , ARN Ribosómico , Proteínas Recombinantes/metabolismo , Transcripción Genética
7.
PLoS One ; 7(1): e30529, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22295092

RESUMEN

BACKGROUND: Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the "cytoplasmic" myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. CONCLUSIONS/SIGNIFICANCE: We have shown that the novel specific NLS brings to the cell nucleus not only the "nuclear" isoform of myosin I (NM1 protein) but also its "cytoplasmic" isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus.


Asunto(s)
Calmodulina/metabolismo , Núcleo Celular/metabolismo , Miosina Tipo I/metabolismo , Miosinas/metabolismo , Actinas/metabolismo , Transporte Activo de Núcleo Celular , Adenosina Difosfato/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Carioferinas/metabolismo , Ratones , Datos de Secuencia Molecular , Miosina Tipo I/química , Miosinas/química , Señales de Localización Nuclear , Estructura Terciaria de Proteína
8.
J Mol Histol ; 39(6): 635-42, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18998217

RESUMEN

Rosiglitazone, peroxisome proliferator-activated receptor-gamma agonist, is an insulin sensitizing agent in peripheral tissues. This study investigated islet hormones and hormone-like peptides expression patterns in rosiglitazone treated streptozotocin (STZ)-diabetic rats by using immunohistochemistry and in situ hybridization methods. Animals were divided into four groups. I. Group: Intact control rats. II. Group: Rosiglitazone-treated controls. III. Group: STZ-diabetic rats. IV. Group: Rosiglitazone-treated diabetic animals. Rosiglitazone was given for 7 days at a dose of 20 mg/kg body weight. In the STZ-diabetic group, there were significant differences in islet hormones and hormone like peptides cell numbers compared to rosiglitazone control group and intact control group. There were significant differences in cocaine- and amphetamine-regulated transcript (CART) and pancreatic polypeptide (PP) cell numbers between rosiglitazone control group and rosiglitazone + STZ-diabetic group. We detected a significant decrease in glucagon mRNA signals in rosiglitazone-treated control group compared to intact controls. We found a statistically significant difference in islet amyloid polypeptide (IAPP) mRNA signals between the STZ-diabetic group and the rosiglitazone + STZ-diabetic group. Besides, we also demonstrated co-localization of peptides by using double and triple histochemistry. In conclusion, our results show that short-term rosiglitazone treatment had a preservative effect to some extent on the expression of islet hormones and hormone-like peptides to maintain the islet function.


Asunto(s)
Hormonas/metabolismo , Hipoglucemiantes/farmacología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , PPAR gamma/agonistas , Péptidos/metabolismo , Tiazolidinedionas/farmacología , Animales , Diabetes Mellitus Experimental , Inmunohistoquímica , Hibridación in Situ , Islotes Pancreáticos/citología , Masculino , Ratas , Ratas Wistar , Rosiglitazona
9.
World J Gastroenterol ; 12(27): 4345-51, 2006 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16865776

RESUMEN

AIM: To investigate the role of metallothionein and proliferating cell nuclear antigen (PCNA) on the morphological and biochemical effects of zinc sulfate in ethanol-induced liver injury. METHODS: Wistar albino rats were divided into four groups. Group I; intact rats, group II; control rats given only zinc, group III; animals given absolute ethanol, group IV; rats given zinc and absolute ethanol. Ethanol-induced injury was produced by the 1 mL of absolute ethanol, administrated by gavage technique to each rat. Animals received 100 mg/kg per day zinc sulfate for 3 d 2 h prior to the administration of absolute ethanol. RESULTS: Increases in metallothionein immunoreactivity in control rats given only zinc and rats given zinc and ethanol were observed. PCNA immunohistochemistry showed that the number of PCNA-positive hepatocytes was increased significantly in the livers of rats administered ethanol + zinc sulfate. Acute ethanol exposure caused degenerative morphological changes in the liver. Blood glutathione levels decreased, serum alkaline phosphatase and aspartate transaminase activities increased in the ethanol group when compared to the control group. Liver glutathione levels were reduced, but lipid peroxidation increased in the livers of the group administered ethanol as compared to the other groups. Administration of zinc sulfate in the ethanol group caused a significant decrease in degenerative changes, lipid peroxidation, and alkaline phosphatase and aspartate transaminase activities, but an increase in liver glutathione. CONCLUSION: Zinc sulfate has a protective effect on ethanol-induced liver injury. In addition, cell proliferation may be related to the increase in metallothionein immunoreactivity in the livers of rats administered ethanol + zinc sulfate.


Asunto(s)
Depresores del Sistema Nervioso Central/efectos adversos , Etanol/efectos adversos , Hígado/efectos de los fármacos , Hígado/patología , Sulfato de Zinc/farmacología , Fosfatasa Alcalina/sangre , Animales , Aspartato Aminotransferasas/sangre , Proliferación Celular/efectos de los fármacos , Glutatión/sangre , Inmunohistoquímica , Peroxidación de Lípido/efectos de los fármacos , Hígado/química , Hígado/fisiología , Masculino , Metalotioneína/análisis , Metalotioneína/fisiología , Antígeno Nuclear de Célula en Proliferación/análisis , Antígeno Nuclear de Célula en Proliferación/fisiología , Ratas , Ratas Wistar
10.
Acta Histochem Cytochem ; 39(1): 9-15, 2006 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17460767

RESUMEN

Chronic hyperglycemia in diabetes is a major causative factor of free radical generation which further leads to many secondary diabetic complications via the damage to cellular proteins, membrane lipids, and nucleic acids. Zinc is an essential trace element in all living systems and plays a structural role in many proteins and enzymes. Somatostatin is known to have inhibitory effects on various gastrointestinal functions. Therefore, we determined somatostatin protein production and secretion levels, and biochemical and light microscopical changes following zinc supplementation in the gastrointestinal tract of streptozotocin (STZ)-diabetic rats. The animals were divided into four groups: Group I: control (untreated) animals; Group II: control animals given zinc sulfate; Group III: diabetic animals; and Group IV: diabetic animals given zinc sulfate. Zinc sulfate was given to the animals by gavage at a daily dose of 100 mg/kg body weight for 60 days. Diabetes was induced by intraperitoneal (i.p.) injection of STZ in a single dose of 65 mg/kg. For histological studies, stomach and duodenum tissues were fixed in Bouin solution and sections stained with Masson's trichrome and Periodic-Acid-Schiff. Tissue homogenates were used for protein, lipid peroxidation (LPO), glutathione (GSH), and nonenzymatic glycosylation (NEG) analyses. Zinc supplementation to the STZ-diabetic rats revealed the protective effect of zinc on these parameters. Zinc supplementation may contribute to prevent at least some complications of diabetes mellitus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...