Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Invest Surg ; 35(5): 1044-1049, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34758683

RESUMEN

BACKGROUND: The aim of this study was to investigate the effects of astaxanthin (ASX) on testicular torsion/detorsion (T/D) damage in rats in terms of oxidative stress and endoplasmic reticulum (ER) stress. METHODS: Eighteen male Sprague-Dawley rats were divided into three groups with six rats in each group: control, T/D and T/D + 20 mg/kg ASX. Torsion and detorsion times were applied as 4 h and 2 h, respectively. ASX application was performed 30 minutes before detorsion. At the end of the period, testicular tissues were removed and biochemical and histological analyzes were performed. To evaluate the degree of oxidative stress, tissue malondialdehyde (MDA), total oxidant status (TOS) and total antioxidant status (TAS) were determined using colorimetric methods, while tissue superoxide dismutase (SOD) levels were determined using ELISA kit. To evaluate the degree of ER stress, tissue glucose regulatory protein 78 (GRP78), activating transcription factor 6 (ATF6) and C/EBP homologous protein (CHOP) levels were determined using ELISA kits. Johnsen's testicle scoring system was used for histological evaluation. RESULTS: In the T/D group, it is determined that statistically significant decreasing in TAS, SOD levels and Johnsen score, and increasing in TOS, OSI, MDA, GRP78, ATF6 and CHOP levels (p < 0.001) compared with control group. ASX administration statistically significantly restored this T/D-induced damage (p < 0.01). CONCLUSION: This is the first study to show that ASX prevent T/D-induced testicular damage through its antioxidant activity. More comprehensive studies are needed to see the underlying mechanisms.


Asunto(s)
Daño por Reperfusión , Torsión del Cordón Espermático , Animales , Antioxidantes/farmacología , Estrés del Retículo Endoplásmico , Humanos , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/etiología , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control , Torsión del Cordón Espermático/complicaciones , Torsión del Cordón Espermático/patología , Superóxido Dismutasa/metabolismo , Xantófilas
2.
FEMS Yeast Res ; 20(4)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32347926

RESUMEN

Alpha-thujone, widely used in beverages (1-5 mg/kg), is known to have cytotoxic effects, but the mode of action and the role of potential apoptotic proteins in yeast cell death should be unraveled. In this study, we used Schizosaccharomyces pombe, which is a promising unicellular model organism in mechanistic toxicology and cell biology, to investigate the involvement of pro-apoptotic factors in alpha-thujone-induced cell death. We showed alpha-thujone-induced ROS accumulation-dependent cytotoxicity and apoptosis. In addition, we used superoxide dismutase-deficient cells (sod1 and sod2 mutants) to understand the effect of oxidative stress. Alpha-thujone caused significant cytotoxicity and apoptotic cell death, particularly in sod mutants. Moreover, two potential apoptotic factors, pca1 and pnu1 (pombe caspase-1 and pombe nuc1) were investigated to understand which factor mediates alpha-thujone-induced cell death. Pca1-deficient cells showed increased survival rates and reduced apoptosis in comparison to parental cells after chemical treatment while pnu1 mutation did not cause any significant change and the response was found identical as of parental cells. Yeast responded to alpha-thujone in caspase-dependent manner which was very similar to that for acetic acid. In conclusion, alfa-thujone-induced apoptosis and accounting mechanisms, which were mediated by ROS and driven by Pca1, were clarified in the unicellular model, S. pombe.


Asunto(s)
Antifúngicos/farmacología , Apoptosis/genética , Monoterpenos Bicíclicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Apoptosis/efectos de los fármacos , Estrés Oxidativo , Schizosaccharomyces/metabolismo
3.
Toxicol Res (Camb) ; 8(2): 216-226, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30931102

RESUMEN

Camphor is one of the monoterpenes widely used in cosmetics, pharmaceutics and the food industry. In this study, we aimed to assess the oxidative, cytotoxic and apoptotic effects of camphor on the fission yeast (Schizosaccharomyces pombe), which is a promising unicellular model organism in mechanistic toxicology and cell biology. Since Sod1 is the main radical scavenger in the cell, we used sod1 mutants to understand whether camphor-induced ROS accumulation caused higher cytotoxicity and apoptosis. Camphor exposure (0-2000 mg L-1) caused significant cytotoxicity in yeast, particularly in sod1Δ cells. DCFDA (2,7-dichlorodihydrofluorescein diacetate) fluorescence and NBT (p-nitro-blue tetrazolium chloride) reduction increased (at least 2.5-3-fold in sod1Δ cells) in correlation with camphor concentrations (800-1200 mg L-1), showing higher ROS levels and oxidative stress. Moreover, cells, stained with acridine orange/ethidium bromide, showed an apoptotic morphology with nuclear fragmentation and condensation. DAPI (4',6-diamidino-2-phenylindole) staining was used to validate the apoptotic nuclear morphology. Dramatically increased mitochondrial impairment, which was higher in sod1Δ cells than in wild type cells, was shown by rhodamine 123 staining. In conclusion, camphor-induced excessive ROS production, which could not be prevented significantly in sod1 mutants, caused a dramatic increase in mortality rates due to intrinsic apoptosis revealed by mitochondrial impairment and apoptotic nuclear morphology. The potential effects of camphor on apoptotic cell death and the underlying mechanisms were clarified in the unicellular eukaryotic model, S. pombe.

4.
Turk J Biol ; 43(6): 382-390, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31892813

RESUMEN

Camphor is widely used in pharmacy, the food industry, and cosmetics. In this study, we evaluate inhibitory and cytotoxic effects of camphor in the fission yeast (Schizosaccharomyces pombe), which presents a unicellular model in mechanistic toxicology and cell biology. Low-dose camphor exposure (0.4 mg/mL) activated autophagy, which was shown by GFP-Atg8 dots and transcriptional upregulation of Atg6 (Beclin-1 ortholog). Autophagy was also confirmed by using autophagy-deficient cells, which showed reduction in GFP-Atg8 dot formation. However, high-dose camphor exposure (0.8 mg/mL) caused dramatic cell death ratios, demonstrated by spot and colony-forming assays, even in autophagy-deficient cells. To unravel the underlying mechanism, this time, apoptosis-deficient cells were exposed to low- and high-dose camphor. Apoptosis was also confirmed by acridine orange/ethidium bromide staining. Among yeast apoptosis mediators, Aif1 was found to mediate camphor-induced cell death. In conclusion, differential regulation of autophagy and apoptosis, and switches between them, were found to be dose-dependent. The potential effects of camphor on autophagy and apoptotic cell death and underlying mechanisms were clarified in basic unicellular eukaryotic model, S. pombe.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA