Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 14(11): e1007671, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30500825

RESUMEN

Mutations that alter signaling of RAS/MAPK-family proteins give rise to a group of Mendelian diseases known as RASopathies. However, among RASopathies, the matrix of genotype-phenotype relationships is still incomplete, in part because there are many RAS-related proteins and in part because the phenotypic consequences may be variable and/or pleiotropic. Here, we describe a cohort of ten cases, drawn from six clinical sites and over 16,000 sequenced probands, with de novo protein-altering variation in RALA, a RAS-like small GTPase. All probands present with speech and motor delays, and most have intellectual disability, low weight, short stature, and facial dysmorphism. The observed rate of de novo RALA variants in affected probands is significantly higher (p = 4.93 x 10(-11)) than expected from the estimated random mutation rate. Further, all de novo variants described here affect residues within the GTP/GDP-binding region of RALA; in fact, six alleles arose at only two codons, Val25 and Lys128. The affected residues are highly conserved across both RAL- and RAS-family genes, are devoid of variation in large human population datasets, and several are homologous to positions at which disease-associated variants have been observed in other GTPase genes. We directly assayed GTP hydrolysis and RALA effector-protein binding of the observed variants, and found that all but one tested variant significantly reduced both activities compared to wild-type. The one exception, S157A, reduced GTP hydrolysis but significantly increased RALA-effector binding, an observation similar to that seen for oncogenic RAS variants. These results show the power of data sharing for the interpretation and analysis of rare variation, expand the spectrum of molecular causes of developmental disability to include RALA, and provide additional insight into the pathogenesis of human disease caused by mutations in small GTPases.


Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Proteínas Mitocondriales/genética , Mutación , Dominios y Motivos de Interacción de Proteínas/genética , Proteínas de Unión al GTP ral/genética , Proteínas ras/genética , Facies , Genotipo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Mitocondriales/química , Modelos Moleculares , Mutación Missense , Fenotipo , Conformación Proteica , Proteínas de Unión al GTP ral/química , Proteínas ras/química
2.
Mol Genet Metab ; 79(2): 134-41, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12809645

RESUMEN

Smith-Magenis syndrome (SMS) is a multiple congenital anomalies/mental retardation syndrome associated with an interstitial deletion of chromosome 17p11.2. SMS is thought to be a contiguous gene syndrome caused by haploinsufficiency of one or more genes in the associated deletion region. To date, no gene has been reported to contribute to the characteristics seen in the SMS phenotype. To expedite the search for the SMS causative genes, we have reduced the SMS critical region to approximately 950kb by analyzing 11 patient samples carrying 17p11.2 deletions. In addition, we have re-evaluated the frequency with which different 17p11.2 deletions naturally occur, showing evidence that homologous recombination likely takes place between low copy repeats at a higher frequency than previously reported.


Asunto(s)
Anomalías Múltiples/genética , Cromosomas Humanos Par 17 , Discapacidad Intelectual/genética , Anomalías Múltiples/etiología , Adolescente , Niño , Preescolar , Deleción Cromosómica , Femenino , Humanos , Hibridación Fluorescente in Situ , Masculino , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA