Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 7(4)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182731

RESUMEN

Comprehensive analysis of the glycoproteome is critical due to the importance of glycosylation to many aspects of protein function. The tremendous complexity of this post-translational modification, however, makes it difficult to adequately characterize the glycoproteome using any single method. To overcome this pitfall, in this report we compared three glycoproteomic analysis methods; first the recently developed N-linked glycans and glycosite-containing peptides (NGAG) chemoenzymatic method, second, solid-phase extraction of N-linked glycoproteins (SPEG), and third, hydrophilic interaction liquid chromatography (HILIC) by characterizing N-linked glycosites in the secretome of Chinese hamster ovary (CHO) cells. Interestingly, the glycosites identified by SPEG and HILIC overlapped considerably whereas NGAG identified many glycosites not observed in the other two methods. Further, utilizing enhanced intact glycopeptide identification afforded by the NGAG workflow, we found that the sugar analog 1,3,4-O-Bu3ManNAc, a "high flux" metabolic precursor for sialic acid biosynthesis, increased sialylation of secreted proteins including recombinant human erythropoietin (rhEPO).

2.
Biotechnol J ; 14(4): e1800186, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30221828

RESUMEN

Sodium butyrate (NaBu) is not only well-known for enhancing protein production, but also degrades glycan quality. In this study, butyrate supplied by the precursor molecule 1,3,4-O-Bu3 ManNAc is applied to overcome the negative effects of NaBu on glycan quality while simultaneously increasing the productivity of the model recombinant erythropoietin (EPO). The beneficial impact of 1,3,4-O-Bu3 ManNAc on EPO glycan quality, while evident in wild-type CHO cells, is particularly pronounced in glycoengineered CHO cells with stable overexpression of ß-1,4- and ß-1,6-N-acetylglucosaminyltransferases (GnTIV and GnTV) and α-2,6-sialyltransferase (ST6) enzymes responsible for N-glycan antennarity and sialylation. Supplementation of 1,3,4-O-Bu3 ManNAc achieves approximately 30% sialylation enhancement on EPO protein in wild-type CHO cells. Overexpression of GnTIV/GnTV/ST6 in CHO cells increases EPO sialylation about 40%. Combining 1,3,4-O-Bu3 ManNAc treatment in glyocengineered CHO cells promotes EPO sialylation about 75% relative to EPO from wild-type CHO cells. Moreover, a detailed mass spectrometric ESI-LC-MS/MS characterization of glycans at each of the three N-glycosylation sites of EPO showed that the 1st N-site is highly sialylated and either the negative impact of NaBu or the beneficial effect 1,3,4-O-Bu3 ManNAc treatments mainly affects the 2nd and 3rd N-glycan sites of EPO protein. In summary, these results demonstrate 1,3,4-O-Bu3 ManNAc can compensate for the negative effect of NaBu on EPO glycan quality while simultaneously enhancing recombinant protein yields. In this way, a platform that integrates glycoengineering with metabolic supplementation can result in synergistic improvements in both production and glycosylation in CHO cells.


Asunto(s)
Ácido Butírico/química , Eritropoyetina/química , Hexosaminas/química , Polisacáridos/química , Animales , Células CHO , Cromatografía Liquida , Cricetinae , Cricetulus , Eritropoyetina/genética , Glicosilación/efectos de los fármacos , Hexosaminas/genética , Humanos , Polisacáridos/biosíntesis , Ingeniería de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Espectrometría de Masas en Tándem
3.
Biotechnol Bioeng ; 115(6): 1531-1541, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29427449

RESUMEN

The chemical additive sodium butyrate (NaBu) has been applied in cell culture media as a direct and convenient method to increase the protein expression in Chinese hamster ovary (CHO) and other mammalian cells. In this study, we examined an alternative chemical additive, 1,3,4-O-Bu3 ManNAc, for its effect on recombinant protein production in CHO. Supplementation with 1,3,4-O-Bu3 ManNAc for two stable CHO cell lines, expressing human erythropoietin or IgG, enhanced protein expression for both products with negligible impact on cell growth, viability, glucose utilization, and lactate accumulation. In contrast, sodium butyrate treatment resulted in a ∼20% decrease in maximal viable cell density and ∼30% decrease in cell viability at the end of cell cultures compared to untreated or 1,3,4-O-Bu3 ManNAc treated CHO cell lines for both products. While NaBu treatment enhanced product yields more than the 1,3,4-O-Bu3 ManNAc treatment, the NaBu treated cells also exhibited higher levels of caspase 3 positive cells using microscopy analysis. Furthermore, the mRNA levels of four cell apoptosis genes (Cul2, BAK, BAX, and BCL2L11) were up-regulated more in sodium butyrate treated wild-type, erythropoietin, or IgG expressing CHO-K1 cell lines while most of the mRNA levels of apoptosis genes in 1,3,4-O-Bu3 ManNAc treated cell lines remained equal or increased only slightly compared to the levels in untreated CHO cell lines. Finally, lectin blot analysis revealed that the 1,3,4-O-Bu3 ManNAc-treated cells displayed higher relative sialylation levels on recombinant EPO, consistent with the effect of the ManNAc component of this additive, compared to control while NaBu treatment led to lower sialylation levels than control, or 1,3,4-O-Bu3 ManNAc-treatment. These findings demonstrate that 1,3,4-O-Bu3 ManNAc has fewer negative effects on cell cytotoxicity and apoptosis, perhaps as a result of a more deliberate uptake and release of the butyrate compounds, while simultaneously increasing the expression of multiple recombinant proteins, and improving the glycosylation characteristics when applied at comparable molarity levels to NaBu. Thus, 1,3,4-O-Bu3 ManNAc represents a highly promising media additive alternative in cell culture for improving protein yields without sacrificing cell mass and product quality in future bioproduction processes.


Asunto(s)
Ácido Butírico/metabolismo , Células CHO/metabolismo , Técnicas de Cultivo de Célula/métodos , Hexosaminas/metabolismo , Proteínas Recombinantes/biosíntesis , Animales , Cricetulus , Medios de Cultivo/química , Eritropoyetina/biosíntesis , Expresión Génica , Humanos , Inmunoglobulina G/biosíntesis
4.
Methods Mol Biol ; 1603: 25-44, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28493121

RESUMEN

Chinese hamster ovary (CHO) cells represent the predominant platform in biopharmaceutical industry for the production of recombinant biotherapeutic proteins, especially glycoproteins. These glycoproteins include oligosaccharide or glycan attachments that represent one of the principal components dictating product quality. Especially important are the N-glycan attachments present on many recombinant glycoproteins of commercial interest. Furthermore, altering the glycan composition can be used to modulate the production quality of a recombinant biotherapeutic from CHO and other mammalian hosts. This review first describes the glycosylation network in mammalian cells and compares the glycosylation patterns between CHO and human cells. Next genetic strategies used in CHO cells to modulate the sialylation patterns through overexpression of sialyltransfereases and other glycosyltransferases are summarized. In addition, other approaches to alter sialylation including manipulation of sialic acid biosynthetic pathways and inhibition of sialidases are described. Finally, this review also covers other strategies such as the glycosylation site insertion and manipulation of glycan heterogeneity to produce desired glycoforms for diverse biotechnology applications.


Asunto(s)
Células CHO , Glicoproteínas/metabolismo , Ingeniería Metabólica/métodos , Polisacáridos/metabolismo , Animales , Cricetulus , Glicoproteínas/genética , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Humanos , Ácido N-Acetilneuramínico/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Biotechnol Bioeng ; 114(8): 1899-1902, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28295160

RESUMEN

A desirable feature of many therapeutic glycoprotein production processes is to maximize the final sialic acid content. In this study, the effect of applying a novel chemical analog of the sialic acid precursor N-acetylmannosamine (ManNAc) on the sialic acid content of cellular proteins and a model recombinant glycoprotein, erythropoietin (EPO), was investigated in CHO-K1 cells. By introducing the 1,3,4-O-Bu3 ManNAc analog at 200-300 µM into cell culture media, the intracellular sialic acid content of EPO-expressing cells increased ∼8-fold over untreated controls while the level of cellular sialylated glycoconjugates increased significantly as well. For example, addition of 200-300 µM 1,3,4-O-Bu3 ManNAc resulted in >40% increase in final sialic acid content of recombinant EPO, while natural ManNAc at ∼100 times higher concentration of 20 mM produced a less profound change in EPO sialylation. Collectively, these results indicate that butyrate-derivatization of ManNAc improves the capacity of cells to incorporate exogenous ManNAc into the sialic acid biosynthetic pathway and thereby increase sialylation of recombinant EPO and other glycoproteins. This study establishes 1,3,4-O-Bu3 ManNAc as a novel chemical supplement to improve glycoprotein quality and sialylation levels at concentrations orders of magnitude lower than alternative approaches. Biotechnol. Bioeng. 2017;114: 1899-1902. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Eritropoyetina/biosíntesis , Eritropoyetina/genética , Hexosaminas/metabolismo , Ácido N-Acetilneuramínico/biosíntesis , Animales , Células CHO , Cricetulus , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Ácido N-Acetilneuramínico/aislamiento & purificación , Oligosacáridos , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
6.
Biotechnol J ; 12(2)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27943633

RESUMEN

Immunoglobin G with α-2,6 sialylation has been reported to have an impact on antibody-dependent cellular cytotoxicity and anti-inflammatory efficacy. However, production of antibodies with α-2,6 sialylation from Chinese hamster ovary cells is challenging due to the inaccessibility of sialyltransferases for the heavy chain N-glycan site and the presence of exclusively α-2,3 sialyltransferases. In this study, combining mutations on the Fc regions to allow sialyltransferase accessibility with overexpression of α-2,6 sialyltransferase produced IgG with significant levels of both α-2,6 and α-2,3 sialylation. Therefore, ST3GAL4 and ST3GAL6 genes were disrupted by CRISPR/Cas9 to minimize the α-2,3 sialylation. Sialidase treatment and SNA lectin blot indicated greatly increased α-2,6 sialylation level relative to α-2,3 sialylation for the α-2,3 sialyltransferase knockouts when combined with α-2,6 sialyltransferase overexpression. Indeed, α-2,3 linked sialic acids were not detected on IgG produced from the α-2,3 sialyltransferase knockout-α-2,6 sialyltransferase overexpression pools. Finally, glycoprofiling of IgG with four amino acid substitutions expressed from an α-2,3 sialyltransferase knockout-α-2,6 sialyltransferase stable clone resulted in more than 77% sialylated glycans and more than 62% biantennary disialylated glycans as indicated by both MALDI-TOF and LC-ESI-MS. Engineered antibodies from these modified Chinese hamster ovary cell lines will provide biotechnologists with IgGs containing N-glycans with different structural variations for examining the role of glycosylation on protein performance.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Bioingeniería/métodos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Animales , Anticuerpos Monoclonales/genética , Células CHO , Cricetulus , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
J Bioenerg Biomembr ; 48(3): 211-25, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27155879

RESUMEN

Bcl-2 family proteins are known to competitively regulate Ca(2+); however, the specific inter-organelle signaling pathways and related cellular functions are not fully elucidated. In this study, a portion of Bcl-xL was detected at the ER-mitochondrion interface or MAM (mitochondria-associated ER membrane) in association with type 3 inositol 1,4,5-trisphosphate receptors (IP3R3); an association facilitated by the BH4 and transmembrane domains of Bcl-xL. Moreover, increasing Bcl-xL expression enhanced transient mitochondrial Ca(2+) levels upon ER Ca(2+) depletion induced by short-term, non-apoptotic incubation with thapsigargin (Tg), while concomitantly reducing cytosolic Ca(2+) release. These mitochondrial changes appear to be IP3R3-dependent and resulted in decreased NAD/NADH ratios and higher electron transport chain oxidase activity. Interestingly, extended Tg exposure stimulated ER stress, but not apoptosis, and further enhanced TCA cycling. Indeed, confocal analysis indicated that Bcl-xL translocated to the MAM and increased its interaction with IP3R3 following extended Tg treatment. Thus, the MAM is a critical cell-signaling junction whereby Bcl-xL dynamically interacts with IP3R3 to coordinate mitochondrial Ca(2+) transfer and alters cellular metabolism in order to increase the cells' bioenergetic capacity, particularly during periods of stress.


Asunto(s)
Señalización del Calcio , Metabolismo Energético , Proteína bcl-X/fisiología , Animales , Transporte Biológico , Células CHO , Calcio/metabolismo , Cricetulus , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias/metabolismo , Proteína bcl-X/metabolismo
8.
Sci Rep ; 5: 17585, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26616285

RESUMEN

Glycan is an important class of macromolecules that play numerous biological functions. Quantitative glycomics--analysis of glycans at global level--however, is far behind genomics and proteomics owing to technical challenges associated with their chemical properties and structural complexity. As a result, technologies that can facilitate global glycan analysis are highly sought after. Here, we present QUANTITY (Quaternary Amine Containing Isobaric Tag for Glycan), a quantitative approach that can not only enhance detection of glycans by mass spectrometry, but also allow high-throughput glycomic analysis from multiple biological samples. This robust tool enabled us to accomplish glycomic survey of bioengineered Chinese Hamster Ovary (CHO) cells with knock-in/out enzymes involved in protein glycosylation. Our results demonstrated QUANTITY is an invaluable technique for glycan analysis and bioengineering.


Asunto(s)
Metabolómica/métodos , Polisacáridos/metabolismo , Algoritmos , Animales , Células CHO , Cricetinae , Cricetulus , Glicosilación , Espectrometría de Masas/métodos , Polisacáridos/química , Proteómica/métodos , Reproducibilidad de los Resultados
9.
Biotechnol Bioeng ; 112(11): 2343-51, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26154505

RESUMEN

Sialic acid, a terminal residue on complex N-glycans, and branching or antennarity can play key roles in both the biological activity and circulatory lifetime of recombinant glycoproteins of therapeutic interest. In order to examine the impact of glycosyltransferase expression on the N-glycosylation of recombinant erythropoietin (rEPO), a human α2,6-sialyltransferase (ST6Gal1) was expressed in Chinese hamster ovary (CHO-K1) cells. Sialylation increased on both EPO and CHO cellular proteins as observed by SNA lectin analysis, and HPLC profiling revealed that the sialic acid content of total glycans on EPO increased by 26%. The increase in sialic acid content was further verified by detailed profiling of the N-glycan structures using mass spectra (MS) analysis. In order to enhance antennarity/branching, UDP-N-acetylglucosamine: α-1,3-D-mannoside ß1,4-N-acetylglucosaminyltransferase (GnTIV/Mgat4) and UDP-N-acetylglucosamine:α-1,6-D-mannoside ß1,6-N-acetylglucosaminyltransferase (GnTV/Mgat5), was incorporated into CHO-K1 together with ST6Gal1. Tri- and tetraantennary N-glycans represented approximately 92% of the total N-glycans on the resulting EPO as measured using MS analysis. Furthermore, sialic acid content of rEPO from these engineered cells was increased ∼45% higher with tetra-sialylation accounting for ∼10% of total sugar chains compared to ∼3% for the wild-type parental CHO-K1. In this way, coordinated overexpression of these three glycosyltransferases for the first time in model CHO-K1 cell lines provides a mean for enhancing both N-glycan branching complexity and sialylation with opportunities to generate tailored complex N-glycan structures on therapeutic glycoproteins in the future.


Asunto(s)
Eritropoyetina/metabolismo , Glicosiltransferasas/metabolismo , Ingeniería Metabólica , Polisacáridos/metabolismo , Proteínas Recombinantes/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Cricetulus , Femenino , Glicosilación , Glicosiltransferasas/genética , Humanos , Lectinas/metabolismo , Espectrometría de Masas , Unión Proteica
10.
Biochem Biophys Res Commun ; 463(3): 211-5, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25998389

RESUMEN

In this research, we examined which genes are involved in N-linked sialylation in Chinese Hamster Ovary (CHO) cells using siRNA knockdown approaches. Three genes from the sialyltransferase family (ST3GAL3, ST3GAL4 and ST3GAL6) were chosen as knockdown targets with siRNA applied to reduce their expression. Single, double and triple gene knockdowns were investigated, and the reduction levels of sialylation on the total cell lysate were monitored by enzyme-linked lectin absorption assays (ELLA) and sialic acid quantification with high performance liquid chromatography (HPLC). All transfection groups showed effective reduction in 2,3-linked sialylation whereas the trend of reduction levels of triple siRNA transfection outweighed both the dual siRNA groups and single siRNA transfection groups. Next, this transfection approach was applied to CHO cells producing erythropoietin (EPO). Quantification of EPO sialylation showed similar result to total cell lysate except that the ST3GAL4 siRNA transfection exhibited the largest reduction according to the HPLC analysis as compared with other single siRNA transfections. Finally, the N-glycan released from the EPO transfected with ST3GAL4 siRNA showed a prominent reduction in sialyation level among the single siRNA transfections. From these experiments, we concluded that each of these three genes were involved in N-linked sialylation and ST3GAL4 may play the critical role in glycoprotein sialylation of recombinant proteins such as EPO.


Asunto(s)
Eritropoyetina/metabolismo , Interferencia de ARN , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Eritropoyetina/genética , Glicosilación , Humanos , Ácido N-Acetilneuramínico/metabolismo , ARN Interferente Pequeño/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , beta-Galactosida alfa-2,3-Sialiltransferasa
11.
Plant J ; 74(3): 524-33, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23350615

RESUMEN

Protein ubiquitination requires the concerted action of three enzymes: ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3). These ubiquitination enzymes belong to an abundant protein family that is encoded in all eukaryotic genomes. Describing their biochemical characteristics is an important part of their functional analysis. It has been recognized that various E2/E3 specificities exist, and that detection of E3 ubiquitination activity in vitro may depend on the recruitment of E2s. Here, we describe the development of an in vitro ubiquitination system based on proteins encoded by genes from Arabidopsis. It includes most varieties of Arabidopsis E2 proteins, which are tested with several RING-finger type E3 ligases. This system permits determination of E3 activity in combination with most of the E2 sub-groups that have been identified in the Arabidopsis genome. At the same time, E2/E3 specificities have also been explored. The components used in this system are all from plants, particularly Arabidopsis, making it very suitable for ubiquitination assays of plant proteins. Some E2 proteins that are not easily expressed in Escherichia coli were transiently expressed and purified from plants before use in ubiquitination assays. This system is also adaptable to proteins of species other than plants. In this system, we also analyzed two mutated forms of ubiquitin, K48R and K63R, to detect various types of ubiquitin conjugation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Genes de Plantas , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia Conservada , Activación Enzimática , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Mutación Puntual , Estructura Terciaria de Proteína , Especificidad por Sustrato , Enzimas Ubiquitina-Conjugadoras/genética
12.
Protein Cell ; 3(12): 921-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23096592

RESUMEN

Detection of protein-protein interaction can provide valuable information for investigating the biological function of proteins. The current methods that applied in protein-protein interaction, such as co-immunoprecipitation and pull down etc., often cause plenty of working time due to the burdensome cloning and purification procedures. Here we established a system that characterization of protein-protein interaction was accomplished by co-expression and simply purification of target proteins from one expression cassette within E. coli system. We modified pET vector into co-expression vector pInvivo which encoded PPV NIa protease, two cleavage site F and two multiple cloning sites that flanking cleavage sites. The target proteins (for example: protein A and protein B) were inserted at multiple cloning sites and translated into polyprotein in the order of MBP tag-protein A-site F-PPV NIa protease-site F-protein B-His(6) tag. PPV NIa protease carried out intracellular cleavage along expression, then led to the separation of polyprotein components, therefore, the interaction between protein A-protein B can be detected through one-step purification and analysis. Negative control for protein B was brought into this system for monitoring interaction specificity. We successfully employed this system to prove two cases of reported protien-protein interaction: RHA2a/ANAC and FTA/FTB. In conclusion, a convenient and efficient system has been successfully developed for detecting protein-protein interaction.


Asunto(s)
Endopeptidasas/metabolismo , Virus Eruptivo de la Ciruela/enzimología , Mapeo de Interacción de Proteínas/métodos , Proteolisis , Endopeptidasas/genética , Escherichia coli/genética , Virus Eruptivo de la Ciruela/genética
13.
Protein Cell ; 2(1): 41-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21337008

RESUMEN

Plants are known to be efficient hosts for the production of mammalian therapeutic proteins. However, plants produce complex N-glycans bearing ß1,2-xylose and core α1,3-fucose residues, which are absent in mammals. The immunogenicity and allergenicity of plant-specific Nglycans is a key concern in mammalian therapy. In this study, we amplified the sequences of 2 plant-specific glycosyltransferases from Nicotiana tabacum L. cv Bright Yellow 2 (BY2), which is a well-established cell line widely used for the expression of therapeutic proteins. The expression of the endogenous xylosyltranferase (XylT) and fucosyltransferase (FucT) was downregulated by using RNA interference (RNAi) strategy. The xylosylated and core fucosylated N-glycans were significantly, but not completely, reduced in the glycoengineered lines. However, these RNAi-treated cell lines were stable and viable and did not exhibit any obvious phenotype. Therefore, this study may provide an effective and promising strategy to produce recombinant glycoproteins in BY2 cells with humanized N-glycoforms to avoid potential immunogenicity.


Asunto(s)
Regulación hacia Abajo , Epítopos/genética , Epítopos/inmunología , Glicoproteínas/genética , Nicotiana/citología , Nicotiana/genética , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Western Blotting , Secuencia de Carbohidratos , Línea Celular , Clonación Molecular , ADN Complementario/genética , Fucosa/metabolismo , Fucosiltransferasas/química , Fucosiltransferasas/deficiencia , Fucosiltransferasas/genética , Fucosiltransferasas/inmunología , Glicoproteínas/química , Glicoproteínas/inmunología , Datos de Secuencia Molecular , Pentosiltransferasa/química , Pentosiltransferasa/deficiencia , Pentosiltransferasa/genética , Pentosiltransferasa/inmunología , Polisacáridos/química , Polisacáridos/inmunología , Interferencia de ARN , Especificidad de la Especie , Xilosa/metabolismo , UDP Xilosa Proteína Xilosiltransferasa
14.
Cell Res ; 21(6): 957-69, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21187857

RESUMEN

Eukaryotic organisms have quality-control mechanisms that allow misfolded or unassembled proteins to be retained in the endoplasmic reticulum (ER) and subsequently degraded by ER-associated degradation (ERAD). The ERAD pathway is well studied in yeast and mammals; however, the biological functions of plant ERAD have not been reported. Through molecular and cellular biological approaches, we found that ERAD is necessary for plants to overcome salt stress. Upon salt treatment ubiquitinated proteins increased in plant cells, especially unfolded proteins that quickly accumulated in the ER and subsequently induced ER stress responses. Defect in HRD3A of the HRD1/HRD3 complex of the ERAD pathway resulted in alteration of the unfolded protein response (UPR), increased plant sensitivity to salt, and retention of ERAD substrates in plant cells. Furthermore, we demonstrated that Ca(2+) release from the ER is involved in the elevation of UPR and reactive oxygen species (ROS) participates the ERAD-related plant salt response pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Plantas Tolerantes a la Sal/metabolismo , Respuesta de Proteína Desplegada , Antibacterianos/farmacología , Proteínas de Arabidopsis/genética , Señalización del Calcio/efectos de los fármacos , Técnicas de Inactivación de Genes , Proteínas de la Membrana/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fenotipo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantas Tolerantes a la Sal/genética , Estrés Fisiológico , Tunicamicina/farmacología , Ubiquitinación
15.
Sci China C Life Sci ; 52(8): 739-46, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19727592

RESUMEN

Plants possess some desirable characteristics to synthesize recombinant glycoproteins for pharmaceutical application. However, the mammalian glycoproteins produced in plants are somewhat different from their natural counterparts in terms of N-glycoforms. The immunogenicity of plant-specific glyco-epitopes is the major concern in human therapy. Here, the distribution of N-glycans in different growth phases of tobacco BY2 cells and their immunogenicity in mice were determined. It was observed that the percentage of beta1,2-xylose and alpha1,3-fucose in proteins of growing cells increased and the corresponding protein extracts caused accelerated immune response in mice. Based on this observation, the recombinant erythropoietin in BY2 cells was expressed and characterized, and Western blot analysis showed that the recombinant erythropoietin contained a relatively small amount of plant-specific glyco-epitopes in the early phase of culture growth. This study may provide a simple but effective strategy for the production of therapeutic glycoproteins with human-like N-glycan structures in plant hosts to avoid a great allergenic risk.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Proteínas de Plantas/genética , Polisacáridos/metabolismo , Animales , Secuencia de Carbohidratos , Cartilla de ADN , Ensayo de Inmunoadsorción Enzimática , Epítopos/genética , Femenino , Humanos , Inmunogenética , Mamíferos , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Oryza/genética , Plásmidos , Polisacáridos/biosíntesis , Polisacáridos/genética , Rhizobium/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Nicotiana/crecimiento & desarrollo , Nicotiana/inmunología
16.
Cell Res ; 19(11): 1279-90, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19752887

RESUMEN

NAC family genes encode plant-specific transcription factors involved in diverse biological processes. In this study, the Arabidopsis NAC gene ATAF1 was found to be induced by drought, high-salinity, abscisic acid (ABA), methyl jasmonate, mechanical wounding, and Botrytis cinerea infection. Significant induction of ATAF1 was found in an ABA-deficient mutant aba2 subjected to drought or high salinity, revealing an ABA-independent mechanism of expression. Arabidopsis ATAF1-overexpression lines displayed many altered phenotypes, including dwarfism and short primary roots. Furthermore, in vivo experiments indicate that ATAF1 is a bona fide regulator modulating plant responses to many abiotic stresses and necrotrophic-pathogen infection. Overexpression of ATAF1 in Arabidopsis increased plant sensitivity to ABA, salt, and oxidative stresses. Especially, ATAF1 overexpression plants, but not mutant lines, showed remarkably enhanced plant tolerance to drought. Additionally, ATAF1 overexpression enhanced plant susceptibility to the necrotrophic pathogen B. cinerea, but did not alter disease symptoms caused by avirulent or virulent strains of P. syringae pv tomato DC3000. Transgenic plants overexpressing ATAF1 were hypersensitive to oxidative stress, suggesting that reactive oxygen intermediates may be related to ATAF1-mediated signaling in response to both pathogen and abiotic stresses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Represoras/metabolismo , Ácido Abscísico , Acetatos , Proteínas de Arabidopsis/genética , Botrytis/patogenicidad , Ciclopentanos , Sequías , Estrés Oxidativo/fisiología , Oxilipinas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Pseudomonas syringae/patogenicidad , Proteínas Represoras/genética , Plantas Tolerantes a la Sal/fisiología , Transducción de Señal/fisiología
17.
Vaccine ; 27(36): 5001-7, 2009 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-19523911

RESUMEN

Vaccines produced in plant systems are safe and economical; however, the extensive application of plant-based vaccines is mainly hindered by low expression levels of heterologous proteins in plant systems. Here, we demonstrated that the post-transcriptional gene silencing suppressor p19 protein from tomato bushy stunt virus substantially enhanced the transient expression of recombinant SARS-CoV nucleocapsid (rN) protein in Nicotiana benthamiana. The rN protein in the agrobacteria-infiltrated plant leaf accumulated up to a concentration of 79 microg per g fresh leaf weight at 3 days post infiltration. BALB/c mice were intraperitoneally vaccinated with pre-treated plant extract emulsified in Freund's adjuvant. The rN protein-specific IgG in the mouse sera attained a titer about 1:1,800 following three doses of immunization, which suggested effective B-cell maturation and differentiation in mice. Antibodies of the subclasses IgG1 and IgG2a were abundantly present in the mouse sera. During vaccination of rN protein, the expression of IFN-gamma and IL-10 was evidently up-regulated in splenocytes at different time points, while the expression of IL-2 and IL-4 was not. Up to now, this is the first study that plant-expressed recombinant SARS-CoV N protein can induce strong humoral and cellular responses in mice.


Asunto(s)
Nicotiana/metabolismo , Proteínas de la Nucleocápside/inmunología , Plantas Modificadas Genéticamente/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Antivirales/sangre , Proteínas de la Nucleocápside de Coronavirus , Femenino , Adyuvante de Freund/administración & dosificación , Adyuvante de Freund/farmacología , Silenciador del Gen , Humanos , Inmunoglobulina G/sangre , Inyecciones Intraperitoneales , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Leucocitos Mononucleares/inmunología , Ratones , Ratones Endogámicos BALB C , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/aislamiento & purificación , Plantas Modificadas Genéticamente/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Bazo/inmunología , Nicotiana/genética , Tombusvirus/genética , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/aislamiento & purificación
18.
Plant Physiol ; 143(1): 213-24, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17085513

RESUMEN

Complete cellulose synthesis is required to form functional cell walls and to facilitate proper cell expansion during plant growth. AtCESA2 is a member of the cellulose synthase A family in Arabidopsis (Arabidopsis thaliana) that participates in cell wall formation. By analysis of transgenic seedlings, we demonstrated that AtCESA2 was expressed in all organs, except root hairs. The atcesa2 mutant was devoid of AtCESA2 expression, leading to the stunted growth of hypocotyls in seedlings and greatly reduced seed production in mature plants. These observations were attributed to alterations in cell size as a result of reduced cellulose synthesis in the mutant. The orientation of microtubules was also altered in the atcesa2 mutant, which was clearly observed in hypocotyls and petioles. Complementary expression of AtCESA2 in atcesa2 could rescue the mutant phenotypes. Together, we conclude that disruption of cellulose synthesis results in altered orientation of microtubules and eventually leads to abnormal plant growth. We also demonstrated that the zinc finger-like domain of AtCESA2 could homodimerize, possibly contributing to rosette assemblies of cellulose synthase A within plasma membranes.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Aumento de la Célula , Glucosiltransferasas/fisiología , Microtúbulos/metabolismo , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Pared Celular/ultraestructura , Dimerización , Prueba de Complementación Genética , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glucuronidasa/análisis , Microtúbulos/ultraestructura , Datos de Secuencia Molecular , Mutación , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/ultraestructura , Estructura Terciaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...