Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Appl Fluoresc ; 12(3)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702877

RESUMEN

In this research, we synthesized and constructed a novel gelator (namedQN) combining quinoline and naphthalene that self-assembled in N, N-dimethylformamide (DMF) to form a stable supramolecular gel (namedOQN). Under UV light, gelOQNexhibited extremely bright yellow fluorescence. The gelOQNshowed excellent sensing performance for both Fe3+and Cu2+, with a fluorescence 'turn-off' detection mechanism and the lowest detection limit of 7.58 × 10-8M and 1.51 × 10-8M, respectively. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, x-ray powder diffraction (XRD), rheological measurements, x-ray photoelectron spectroscopy (XPS), and fluorescence spectroscopy were used to characterize the gelOQN. TheOQNion-responsive membrane created is an excellent fluorescent writing material.

2.
Nanotechnology ; 35(13)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38035400

RESUMEN

In recent years, notable headway has been made in augmenting supercapacitor functioning through employment of pioneering components, exceptional nanostructures and additional investigation of electrolytes. Nonetheless, achieving superior performance with straightforward techniques remains a significant hurdle. In order to surmount this, an experimental three-dimensional nanospherical pore structure (TPB-20@Ni(OH)2) was designed and prepared. TPB-1 was obtained through carbonisation and activation. TPB-20@Ni(OH)2nanoparticles were synthesized using TPB-1 as the carbon source and nickel chloride hexahydrate as the nickel source. Furthermore, the TPB-20@Ni(OH)2//AC supercapacitor displayed an impressive energy density of 22.1 Wh kg-1. The TPB-20@Ni(OH)2composites exhibited a specific capacity of 978 F-1, which is noteworthy. The exceptional output exhibited by the TPB-20@Ni(OH)2composite derives from its innovative structure, presenting an extensive specific surface area of 237.4 m2g-1and porosity of roughly 4.0 nm. Following 20 000 cycles (at a current density of 1 A g-1), asymmetric supercapacitors assembled from TPB-20@Ni(OH)2//AC retained 80.0% of its initial specific electrostatic capacity, indicating superior electrochemical stability and high electrochemical reversibility.

3.
Nanotechnology ; 33(48)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35803093

RESUMEN

In this work, a mild chemical precipitation method and simple hydrothermal treatment of the nickel hexamyanocobaltate precursor strategy are developed to prepare a sea urchin-like CoNi2S4compound with remarkable specific capacity and excellent cycling stability. The prepared CoNi2S4has an outstanding specific capacity of 149.1 mA h g-1at 1 A g-1and an initial capacity of 83.1% after 3000 cycles at 10 A g-1. Moreover, the porous carbon nanospheres (PCNs) with exhibit cycling stability (94.7% of initial specific capacity after 10 000 cycles at 10 A g-1) are selected as negative electrode to match CoNi2S4positive electrode for assembly of CoNi2S4//PCNs asymmetric supercapacitor (ASC). Satisfactorily, the as-assembled CoNi2S4//PCNs ASC exhibits an impressive energy density of 41.6 Wh kg-1at 797 W kg-1, as well as the suitable capacity retention of 82.8% after 10 000 cycles. The superior properties of the device demonstrated that the as-prepared material is potential energy storage material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA