Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Angew Chem Int Ed Engl ; : e202402625, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709979

RESUMEN

The interfacial instability of high-nickel layered oxides severely plagues practical application of high-energy quasi-solid-state lithium metal batteries (LMBs). Herein, a uniform and highly oxidation-resistant polymer layer within inner Helmholtz plane is engineered by in situ polymerizing 1-vinyl-3-ethylimidazolium (VEIM) cations preferentially adsorbed on LiNi0.83Co0.11Mn0.06O2 (NCM83) surface, inducing the formation of anion-derived cathode electrolyte interphase with fast interfacial kinetics. Meanwhile, the copolymerization of [VEIM][BF4] and vinyl ethylene carbonate (VEC) endows P(VEC-IL) copolymer with the positively-charged imidazolium moieties, providing positive electric fields to facilitate Li+ transport and desolvation process. Consequently, the Li||NCM83 cells with a cut-off voltage up to 4.5 V exhibit excellent reversible capacity of 130 mAh g-1 after 1000 cycles at 25 °C and considerable discharge capacity of 134 mAh g-1 without capacity decay after 100 cycles at -20 °C. This work provides deep understanding on tailoring electric double layer by cation specific adsorption for high-voltage quasi-solid-state LMBs.

2.
Chem Commun (Camb) ; 59(94): 13982-13985, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37937427

RESUMEN

Lithium oxalate (Li2C2O4) is an attractive cathode pre-lithiation additive for lithium-ion batteries (LIBs), but its application is hindered by its high decomposition potential (>4.7 V). Due to the liquid-solid synergistic effect of the NaNO2 additive and the LiNi0.83Co0.07Mn0.1O2 (NCM) cathode material, the decomposition efficiency of micro-Li2C2O4 reaches 100% at a low charge cutoff voltage of 4.3 V. Our work boosts the widespread practical application of Li2C2O4 by a simple and promising electrolyte-assisted cathode pre-lithiation strategy.

3.
Nat Commun ; 14(1): 4766, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553335

RESUMEN

The two-electron oxygen reduction reaction in acid is highly attractive to produce H2O2, a commodity chemical vital in various industry and household scenarios, which is still hindered by the sluggish reaction kinetics. Herein, both density function theory calculation and in-situ characterization demonstrate that in dual-atom CoIn catalyst, O-affinitive In atom triggers the favorable and stable adsorption of hydroxyl, which effectively optimizes the adsorption of OOH on neighboring Co. As a result, the oxygen reduction on Co atoms shifts to two-electron pathway for efficient H2O2 production in acid. The H2O2 partial current density reaches 1.92 mA cm-2 at 0.65 V in the rotating ring-disk electrode test, while the H2O2 production rate is as high as 9.68 mol g-1 h-1 in the three-phase flow cell. Additionally, the CoIn-N-C presents excellent stability during the long-term operation, verifying the practicability of the CoIn-N-C catalyst. This work provides inspiring insights into the rational design of active catalysts for H2O2 production and other catalytic systems.

4.
Patterns (N Y) ; 4(6): 100732, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37409054

RESUMEN

Accurate early detection of internal short circuits (ISCs) is indispensable for safe and reliable application of lithium-ion batteries (LiBs). However, the major challenge is finding a reliable standard to judge whether the battery suffers from ISCs. In this work, a deep learning approach with multi-head attention and a multi-scale hierarchical learning mechanism based on encoder-decoder architecture is developed to accurately forecast voltage and power series. By using the predicted voltage without ISCs as the standard and detecting the consistency of the collected and predicted voltage series, we develop a method to detect ISCs quickly and accurately. In this way, we achieve an average percentage accuracy of 86% on the dataset, including different batteries and the equivalent ISC resistance from 1,000 Ω to 10 Ω, indicating successful application of the ISC detection method.

5.
Nanomicro Lett ; 15(1): 99, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037957

RESUMEN

The booming wearable/portable electronic devices industry has stimulated the progress of supporting flexible energy storage devices. Excellent performance of flexible devices not only requires the component units of each device to maintain the original performance under external forces, but also demands the overall device to be flexible in response to external fields. However, flexible energy storage devices inevitably occur mechanical damages (extrusion, impact, vibration)/electrical damages (overcharge, over-discharge, external short circuit) during long-term complex deformation conditions, causing serious performance degradation and safety risks. Inspired by the healing phenomenon of nature, endowing energy storage devices with self-healing capability has become a promising strategy to effectively improve the durability and functionality of devices. Herein, this review systematically summarizes the latest progress in intrinsic self-healing chemistry for energy storage devices. Firstly, the main intrinsic self-healing mechanism is introduced. Then, the research situation of electrodes, electrolytes, artificial interface layers and integrated devices based on intrinsic self-healing and advanced characterization technology is reviewed. Finally, the current challenges and perspective are provided. We believe this critical review will contribute to the development of intrinsic self-healing chemistry in the flexible energy storage field.

6.
Small ; 19(22): e2300758, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36866497

RESUMEN

Fe single atoms and N co-doped carbon nanomaterials (Fe-N-C) are the most promising oxygen reduction reaction (ORR) catalysts to replace platinum group metals. However, high-activity Fe single-atom catalysts suffer from poor stability owing to the low graphitization degree. Here, an effective phase-transition strategy is reported to enhance the stability of Fe-N-C catalysts by inducing increased degree of graphitization and incorporation of Fe nanoparticles encapsulated by graphitic carbon layer without sacrificing activity. Remarkably, the resulted Fe@Fe-N-C catalysts achieved excellent ORR activity (E1/2  = 0.829 V) and stability (19 mV loss after 30K cycles) in acid media. Density functional theory (DFT) calculations agree with experimental phenomena that additional Fe nanoparticles not only favor to the activation of O2 by tailoring d-band center position but also inhibit the demetallization of Fe active center from FeN4 sites. This work provides a new insight into the rational design of highly efficient and durable Fe-N-C catalysts for ORR.

7.
Small ; 19(22): e2207461, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36861365

RESUMEN

The local coordination environment of catalytical moieties directly determines the performance of electrochemical energy storage and conversion devices, such as Li-O2 batteries (LOBs) cathode. However, understanding how the coordinative structure affects the performance, especially for non-metal system, is still insufficient. Herein, a strategy that introduces S-anion to tailor the electronic structure of nitrogen-carbon catalyst (SNC) is proposed to improve the LOBs performance. This study unveils that the introduced S-anion effectively manipulates the p-band center of pyridinic-N moiety, substantially reducing the battery overpotential by accelerating the generation and decomposition of intermediate products Li1-3 O4 . The lower adsorption energy of discharging product Li2 O2 on NS pair accounts for the long-term cyclic stability by exposing the high active area under operation condition. This work demonstrates an encouraging strategy to enhance LOBs performance by modulating the p-band center on non-metal active sites.

8.
J Am Chem Soc ; 145(3): 1728-1739, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36640116

RESUMEN

Single-atom catalysts have been paid more attention to improving sluggish reaction kinetics and anchoring polysulfide for lithium-sulfur (Li-S) batteries. It has been demonstrated that d-block single-atom elements in the fourth period can chemically interact with the local environment, leading to effective adsorption and catalytic activity toward lithium polysulfides. Enlightened by theoretical screening, for the first time, we design novel single-atom Nb catalysts toward improved sulfur immobilization and catalyzation. Calculations reveal that Nb-N4 active moiety possesses abundant unfilled antibonding orbitals, which promotes d-p hybridization and enhances anchoring capability toward lithium polysulfides via a "trapping-coupling-conversion" mechanism. The Nb-SAs@NC cell exhibits a high capacity retention of over 85% after 1000 cycles, a superior rate performance of 740 mA h g-1 at 7 C, and a competitive areal capacity of 5.2 mAh cm-2 (5.6 mg cm-2). Our work provides a new perspective to extend cathodes enabling high-energy-density Li-S batteries.

9.
ChemSusChem ; 16(7): e202202060, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36633554

RESUMEN

Gel polymer electrolytes (GPE) are promising next-generation electrolytes for high-energy batteries, combining the multiple advantages of liquid and all-solid-state electrolytes. Herein, we a synthesized GPE using poly(ethylene glycol)acrylate (PEGDA) in order to understand how the GPE efficiently inhibits lithium dendrite formation and growth. The effects of PEGDA on the solvation shell structure of the lithium ion are investigated using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations, which are also supported by Raman spectroscopy. The GPE electrolytes with optimal PEGDA concentration exhibit high transference numbers (t Li + ${{_{{\rm Li}{^{+}}}}}$ =0.72) and ionic conductivity (σ=3.24 mS cm-1 ). A symmetric lithium ion battery using GPE can be stably cycled for 1200 h in comparison to 320 h in a liquid electrolyte (LE), possibly owing to the high content of LiF (17.9 %) in the solid-electrolyte interphase film of the GPE cell. The observed concentration/electric field gradient observed through the finite element method also accounts for the good cycling performance. In addition, a LiCoO2 |GPE|Li cell demonstrates excellent capacity retention of 87.09 % for 200 cycles; this approach could present promising guidelines for the design of high-energy lithium batteries.

10.
Small ; 18(45): e2204745, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36148862

RESUMEN

Emerging directions in the growing wearable electronics market have spurred the development of flexible energy storage systems that require deformability while maintaining electrochemical performance. However, the traditional fabrication approaches of lithium-ion batteries (LIBs) are challenging to withstand long-cycle bending alternating loads due to the stress concentration caused by the nonuniformity of the actual deformation. Herein, inspired by kirigami, a segmented deformation design of full-cell scale thin-type flexible lithium-ion batteries (FLIBs) with large-scale manufacturing characteristics via the current collector's mechanical blanking process is reported. This strategy allows the battery's elliptical deformation of the actual state to be transformed into the circular strain of the ideal configuration, thereby dispersing the stress concentration on the top of the battery. According to the results, the designed battery maintains >95% capacity after >20 000 harsh in situ dynamic tests. In addition, finite element analysis further reveals the mechanism that the segmented deformation strategy bears the mechanical stress. This work can enlighten the rational design and customization of electrode patterns for high compatibility with various devices, thereby providing potential opportunities for the application of FLIBs.

11.
Angew Chem Int Ed Engl ; 61(42): e202207524, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36038511

RESUMEN

Single atom tailored metal nanoparticles represent a new type of catalysts. Herein, we demonstrate a single atom-cavity coupling strategy to regulate performance of single atom tailored nano-catalysts. Selective atomic layer deposition (ALD) was conducted to deposit Ru single atoms on the surface concavities of PtNi nanoparticles (Ru-ca-PtNi). Ru-ca-PtNi exhibits a record-high activity for methanol oxidation reaction (MOR) with 2.01 A mg-1 Pt . Also, Ru-ca-PtNi showcases a significant durability with only 16 % activity loss. Operando electrochemical Fourier transform infrared spectroscopy (FTIR) and theoretical calculations demonstrate Ru single atoms coupled to cavities accelerate the CO removal by regulating d-band center position. Further, the high diffusion barrier of Ru single atoms in concavities accounts for excellent stability. The developed Ru-ca-PtNi via single atom-cavity coupling opens an encouraging pathway to design highly efficient single atom-based (electro)catalysts.

12.
Nano Lett ; 22(13): 5553-5560, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35708317

RESUMEN

With the development of flexible devices, it is necessary to design high-performance power supplies with superior flexibility, durability, safety, etc., to ensure that they can be deformed with the device while retaining their electrochemical functions. Herein, we have designed a flexible lithium-ion battery inspired by the DNA helix structure. The battery structure is mainly composed of multiple thick energy stacks for energy storage and some grooves for stress buffers, which realized the spiral deformation of batteries. According to the results, the batteries exhibit less than 3% capacity degradation even after more than 31000 times of in situ dynamic mechanical loadings. Moreover, the mechanism of the battery with spiral deformability is further revealed. It is anticipated that this bioinspired design strategy could create unique opportunities for the commercialization of flexible batteries and fill the current gap in realizing battery-specific deformations to meet various requirements for future complex device designs.


Asunto(s)
Suministros de Energía Eléctrica , Litio , ADN , Iones , Litio/química
13.
J Colloid Interface Sci ; 622: 1020-1028, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35567950

RESUMEN

For micron-sized nickel-based hydroxides sheets, the reaction and migration of anions/water molecules in the inner region tends to lag behind those along the edge, which can cause structure mismatch and capacity degradation during cycles. Nanosizing and structure design is a feasible solution to shorten the ion/electron path and improve the reaction homogeneity. Herein, this study reports a novel three-stage strategy (self-assembly of NiMn-LDH/ppy-C - reduction to NiMn/ppy-C - in situ phase transformation into NiMn/NiMn-LDH/ppy-C) to reduce the sheet size of NiMn-LDH to nanometer. Triggered by electrochemical activation, NiMn-LDH nanosheets can hereby easily and orderly grow on the exposed active (111) crystal plane of Ni to establish NiMn-LDH/NiMn heterostructure around ppy-C. Importantly, nanosizing and hierarchical structure play a synergistic role to maintain structural integrity and to promote the electron/mass transfer kinetics. The NiMn/NiMn-LDH/ppy-C composite delivers superior cycling stability with almost no decay of capacity retention after 40,000 cycles at 5 A g-1. Our hierarchical morphology modulation provides an ingenious, efficient way to boost the performance of Ni-based layered hydroxide materials.

14.
Small ; 18(22): e2200367, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35384281

RESUMEN

Mitigating the mechanical degradation and enhancing the ionic/electronic conductivity are critical but challengeable issues toward improving electrochemical performance of conversion-type anodes in rechargeable batteries. Herein, these challenges are addressed by constructing interconnected 3D hierarchically porous structure synergistic with Nb single atom modulation within a Co3 O4 nanocage (3DH-Co3 O4 @Nb). Such a hierarchical-structure nanocage affords several fantastic merits such as rapid ion migration and enough inner space for alleviating volume variation induced by intragrain stress and optimized stability of the solid-electrolyte interface. Particularly, experimental studies in combination with theoretical analysis verify that the introduction of Nb into the Co3 O4 lattice not only improves the electron conductivity, but also accelerates the surface/near-surface reactions defined as pesudocapacitance behavior. Dynamic behavior reveals that the ensemble design shows huge potential for fast and large lithium storage. These features endow 3DH-Co3 O4 @Nb with remarkable battery performance, delivering ≈740 mA h g-1 after ultra-long cycling of 1000 times under a high current density of 5 A g-1 . Importantly, the assembled 3DH-Co3 O4 @Nb//LiCoO2 pouch cell also presents a long-lived cycle performance with only ≈0.059% capacity decay per cycle, inspiring the design of electrode materials from both the nanostructure and atomic level toward practical applications.

15.
Adv Sci (Weinh) ; 9(4): e2103964, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34821481

RESUMEN

Soluble redox mediators (RMs), an alternative to conventional solid catalysts, have been considered an effective countermeasure to ameliorate sluggish kinetics in the cathode of a lithium-oxygen battery recently. Nevertheless, the high mobility of RMs leads to serious redox shuttling, which induces an undesired lithium-metal degeneration and RM decomposition during trade-off catalysis against the sustainable operation of batteries. Here, a novel carbon family of graphdiyne matrix is first proposed to decouple the charge-carrying redox property of ferrocene and the shuttle effects. It is demonstrated that a ferrocene-anchored graphdiyne framework can function as stationary RM, not only preserving the redox-mediating capability of ferrocene, but also promoting the local orientated three-dimensional (3D) growth of Li2 O2 . As a result, the RM-assisted catalysis in lithium-oxygen battery remains of remarkable efficiency and stability without the depletion of oxidized RMs or lithium degradation, resulting in a significantly enhanced electrochemical performance.

16.
Nat Commun ; 12(1): 6335, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732747

RESUMEN

Single-atom catalysts are becoming increasingly significant to numerous energy conversion reactions. However, their rational design and construction remain quite challenging due to the poorly understood structure-function relationship. Here we demonstrate the dynamic behavior of CuN2C2 site during operando oxygen reduction reaction, revealing a substrate-strain tuned geometry distortion of active sites and its correlation with the activity. Our best CuN2C2 site, on carbon nanotube with 8 nm diameter, delivers a sixfold activity promotion relative to graphene. Density functional theory and X-ray absorption spectroscopy reveal that reasonable substrate strain allows the optimized distortion, where Cu bonds strongly with the oxygen species while maintaining intimate coordination with C/N atoms. The optimized distortion facilitates the electron transfer from Cu to the adsorbed O, greatly boosting the oxygen reduction activity. This work uncovers the structure-function relationship of single-atom catalysts in terms of carbon substrate, and provides guidance to their future design and activity promotion.

17.
Science ; 374(6564): 156, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34618557

RESUMEN

Chelating electrolytes reorganize ion solvation and enable reversible magnesium batteries.


Asunto(s)
Cationes Bivalentes
18.
ACS Appl Mater Interfaces ; 13(32): 38296-38304, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34370436

RESUMEN

Lithium-sulfur (Li-S) batteries are drawing huge attention as attractive chemical power sources. However, traditional ether-based solvents (DME/DOL) suffer from safety issues at high temperatures and serious parasitic reactions occur between the Li metal anodes and soluble lithium polysulfides (LiPSs). Herein, we propose a polysulfide-suppressed and flame-retardant electrolyte operated at high temperatures by introducing an inert diluent 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl (TTE) into the high-concentration electrolyte (HCE). Li dendrites are also efficiently suppressed by the formed LiF-rich protective layer. Furthermore, the shuttle effect is mitigated by the decreased solubility of LiPSs. At 60 °C, Li-S batteries using this nonflammable ether-based electrolyte exhibit a high capacity of 666 mAh g-1 over 100 cycles at a current rate of 0.2C, showing the greatly improved high-temperature performance compared to batteries with traditional ether-based electrolytes. The improved electrochemical performance across a range of temperatures and the enhanced safety suggest that the electrolyte has a great practical prospect for safe Li-S batteries.

19.
ACS Appl Mater Interfaces ; 13(24): 28252-28260, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34101431

RESUMEN

The lithium-sulfur (Li-S) battery with a high theoretical energy density (2560 Wh kg-1) is one of the most promising candidates in next-generation energy storage systems. However, its practical application is impeded by the shuttle effect of lithium polysulfides, huge volume expansion, and overgrowth dendrite of lithium. Herein, we propose an artificial conformal agar polymer coating on a lithium anode (marked as A-Li). The functional layer facilitating the formation of a compact interphase on the lithium anode can effectively accommodate expansive volume and restrain the growth of dendritic lithium. The Li/Li symmetric cell with A-Li delivers stable plating/stripping cycling over 300 h at a high current density of 3.0 mA cm-2 and a high fixed areal capacity of 3.0 mAh cm-2. The cycle life of Li-Cu cells with A-Li is twice longer than that of pristine cells, and the Li-S batteries equipped with A-Li anodes also deliver an enhanced specific capacity and high Coulombic efficiencies. This work provides a pathway to protect metal Li anodes and contributes to the development of high-performance Li-S batteries.

20.
ACS Appl Mater Interfaces ; 13(21): 24565-24574, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34009930

RESUMEN

Rechargeable Mg-ion batteries typically suffer from either rapid passivation of the Mg anode or severe corrosion of the current collectors by halogens within the electrolyte, limiting their practical implementation. Here, we demonstrate the broadly applicable strategy of forming an artificial solid electrolyte interphase (a-SEI) layer on Mg to address these challenges. The a-SEI layer is formed by simply soaking Mg foil in a tetraethylene glycol dimethyl ether solution containing LiTFSI and AlCl3, with Fourier transform infrared and ultraviolet-visible spectroscopy measurements revealing spontaneous reaction with the Mg foil. The a-SEI is found to mitigate Mg passivation in Mg(TFSI)2/DME electrolytes with symmetric cells exhibiting overpotentials that are 2 V lower compared to when the a-SEI is not present. This approach is extended to Mg(ClO4)2/DME and Mg(TFSI)2/PC electrolytes to achieve reversible Mg plating and stripping, which is not achieved with bare electrodes. The interfacial resistance of the cells with a-SEI protected Mg is found to be two orders of magnitude lower than that with bare Mg in all three of the electrolytes, indicating the formation of an effective Mg-ion transporting interfacial structure. X-ray absorption and photoemission spectroscopy measurements show that the a-SEI contains minimal MgCO3, MgO, Mg(OH)2, and TFSI-, while being rich in MgCl2, MgF2, and MgS, when compared to the passivation layer formed on bare Mg in Mg(TFSI)2/DME.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...