Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Biochem Biophys Res Commun ; 721: 150144, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38781661

RESUMEN

Cell polarization can be guided by substrate topology through space constraints and adhesion induction, which are part of cellular mechanosensing pathways. Here, we demonstrated that protein tyrosine phosphatase Shp2 plays a crucial role in mediating the response of cells to substrate spatial cues. When compared to cells spreading on surfaces coated uniformly with fibronectin (FN), cells attached to 10 µm-width FN-strip micropattern (MP), which provides spatial cues for uniaxial spreading, exhibited elongated focal adhesions (FAs) and aligned stress fibers in the direction of the MP. As a result of uniaxial cell spreading, nuclei became elongated, dependent on ROCK-mediated actomyosin contractility. Additionally, intracellular viscoelasticity also increased. Shp2-deficient cells did not display elongated FAs mediated by MP, well-aligned stress fibers, or changes in nuclear shape and intracellular viscoelasticity. Overall, our data suggest that Shp2 is involved in regulating FAs and the actin cytoskeleton to modulate nuclear shape and intracellular physical properties in response to substrate spatial cues.

3.
Mater Today Bio ; 26: 101058, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38681057

RESUMEN

Biomechanical cues could effectively govern cell gene expression to direct the differentiation of specific stem cell lineage. Recently, the medium viscosity has emerged as a significant mechanical stimulator that regulates the cellular mechanical properties and various physiological functions. However, whether the medium viscosity can regulate the mechanical properties of human mesenchymal stem cells (hMSCs) to effectively trigger osteogenic differentiation remains uncertain. The mechanism by which cells sense and respond to changes in medium viscosity, and regulate cell mechanical properties to promote osteogenic lineage, remains elusive. In this study, we demonstrated that hMSCs, cultured in a high-viscosity medium, exhibited larger cell spreading area and higher intracellular tension, correlated with elevated formation of actin stress fibers and focal adhesion maturation. Furthermore, these changes observed in hMSCs were associated with activation of TRPV4 (transient receptor potential vanilloid sub-type 4) channels on the cell membrane. This feedback loop among TRPV4 activation, cell spreading and intracellular tension results in calcium influx, which subsequently promotes the nuclear localization of NFATc1 (nuclear factor of activated T cells 1). Concomitantly, the elevated intracellular tension induced nuclear deformation and promoted the nuclear localization of YAP (YES-associated protein). The concurrent activation of NFATc1 and YAP significantly enhanced alkaline phosphatase (ALP) for pre-osteogenic activity. Taken together, these findings provide a more comprehensive view of how viscosity-induced alterations in biomechanical properties of MSCs impact the expression of osteogenesis-related genes, and ultimately promote osteogenic lineage.

4.
Biomaterials ; 308: 122551, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593710

RESUMEN

Sarcopenia, a prevalent muscle disease characterized by muscle mass and strength reduction, is associated with impaired skeletal muscle regeneration. However, the influence of the biomechanical properties of sarcopenic skeletal muscle on the efficiency of the myogenic program remains unclear. Herein, we established a mouse model of sarcopenia and observed a reduction in stiffness within the sarcopenic skeletal muscle in vivo. To investigate whether the biomechanical properties of skeletal muscle directly impact the myogenic program, we established an in vitro system to explore the intrinsic mechanism involving matrix stiffness control of myogenic differentiation. Our findings identify the microtubule motor protein, kinesin-1, as a mechano-transduction hub that senses and responds to matrix stiffness, crucial for myogenic differentiation and muscle regeneration. Specifically, kinesin-1 activity is positively regulated by stiff matrices, facilitating its role in transporting mitochondria and enhancing translocation of the glucose transporter GLUT4 to the cell surface for glucose uptake. Conversely, the softer matrices significantly suppress kinesin-1 activity, leading to the accumulation of mitochondria around nuclei and hindering glucose uptake by inhibiting GLUT4 membrane translocation, consequently impairing myogenic differentiation. The insights gained from the in-vitro system highlight the mechano-transduction significance of kinesin-1 motor proteins in myogenic differentiation. Furthermore, our study confirms that enhancing kinesin-1 activity in the sarcopenic mouse model restores satellite cell expansion, myogenic differentiation, and muscle regeneration. Taken together, our findings provide a potential target for improving muscle regeneration in sarcopenia.


Asunto(s)
Cinesinas , Regeneración , Sarcopenia , Animales , Cinesinas/metabolismo , Ratones , Sarcopenia/metabolismo , Sarcopenia/patología , Músculo Esquelético/metabolismo , Ratones Endogámicos C57BL , Diferenciación Celular , Desarrollo de Músculos , Masculino , Transportador de Glucosa de Tipo 4/metabolismo , Matriz Extracelular/metabolismo , Mitocondrias/metabolismo , Fenómenos Biomecánicos , Glucosa/metabolismo
5.
Insect Sci ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38562016

RESUMEN

Identifying cryptic species poses a substantial challenge to both biologists and naturalists due to morphological similarities. Bemisia tabaci is a cryptic species complex containing more than 44 putative species; several of which are currently among the world's most destructive crop pests. Interpreting and delimiting the evolution of this species complex has proved problematic. To develop a comprehensive framework for species delimitation and identification, we evaluated the performance of distinct data sources both individually and in combination among numerous samples of the B. tabaci species complex acquired worldwide. Distinct datasets include full mitogenomes, single-copy nuclear genes, restriction site-associated DNA sequencing, geographic range, host speciation, and reproductive compatibility datasets. Phylogenetically, our well-supported topologies generated from three dense molecular markers highlighted the evolutionary divergence of species of the B. tabaci complex and suggested that the nuclear markers serve as a more accurate representation of B. tabaci species diversity. Reproductive compatibility datasets facilitated the identification of at least 17 different cryptic species within our samples. Native geographic range information provides a complementary assessment of species recognition, while the host range datasets provide low rate of delimiting resolution. We further summarized different data performances in species classification when compared with reproductive compatibility, indicating that combination of mtCOI divergence, nuclear markers, geographic range provide a complementary assessment of species recognition. Finally, we represent a model for understanding and untangling the cryptic species complexes based on the evidence from this study and previously published articles.

6.
J Biomol Struct Dyn ; 42(4): 1778-1794, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37060321

RESUMEN

Caesalpinia pulcherrima, or peacock flower, has been a subject of cancer therapeutics research, showing promising anti-cancer and anti-metastatic properties. The present research aims to investigate the anti-metastatic potential of the flower, through bioinformatics approaches. Metastasis targets numbering 471 were identified through overlap analysis following NCBI gene, Gene Card and OMIM query. Phytocompounds of the flower were retrieved from PubChem and their protein interactions predicted using Super-PRED and TargetNet. The 28 targets that overlapped with the predicted proteins were used to generate STRING >0.7. Enrichment analysis revealed that C. pulcherrima may inhibit metastasis through angiogenesis-related and leukocyte migration-related pathways. HSP90AA1, ESR1, PIK3CA, ERBB2, KDR and MMP9 were identified as potential core targets while and 6 compounds (3-[(4-Hydroxyphenyl)methylidene]-7,8-dimethoxychromen-4-one (163076213), clotrimazole (2812), Isovouacapenol A (636673), [(4aR,5R,6aS,7R,11aS,11bR)-4a-hydroxy-4,4,7,11b-tetramethyl-9-oxo-1,2,3,5,6,6a,7,11a-octahydronaphtho[2,1-f][1]benzofuran-5-yl] benzoate (163104827), Stigmast-5-en-3beta-ol (86821) and 4,2'-dihydroxy-4'-methoxychalcone (592216)) were identified as potential core compounds. Molecular docking analysis and molecular dynamics simulations investigations revealed that ERBB2, HSP90AA1 and KDR, along with the newly discovered 163076213 compound to be the most significant metastasis targets and bioactive compound, respectively. These three core targets demonstrated interactions consistent with angiogenesis and leukocyte migration pathways. Furthermore, potentially novel interactions, such as KDR-MMP9, KDR-PIK3CA, ERBB2-HSP90AA1, ERBB2-ESR1, ERBB2-PIK3CA and ERBB2-MMP9 interactions were identified and may play a role in crosslinking the aforementioned metastatic pathways. Therefore, the present study revealed the main mechanisms behind the anti-metastatic effects of C. pulcherrima, paving the path for further research on these compounds and proteins to accelerate the research of cancer therapeutics and application of C. pulcherrima.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Caesalpinia , Colesterol/análogos & derivados , Simulación del Acoplamiento Molecular , Metaloproteinasa 9 de la Matriz , Farmacología en Red , Flores , Fosfatidilinositol 3-Quinasa Clase I
7.
Medicine (Baltimore) ; 102(44): e35850, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37933018

RESUMEN

RATIONALE: Transverse testicular ectopia (TTE) is a rare congenital malformation with a high rate of misdiagnosis and mistreatment before operation, which cannot be diagnosed even during operation due to lack of knowledge. PATIENT CONCERNS: Two patients with ectopic testes who were misdiagnosed as right inguinal hernia for the first time and underwent surgery. The "ovary" and "testicle" like structures was seen in the right inguinal region during the first operation. After being transferred to our hospital for laparoscopic surgery, it was found that the left spermatic cord and testis were transversely transverted to the right, the left testis was fixed at the right inner ring, and agglomerated soft tissue could be seen in the right inguinal canal, which was suspected to be Muller tube. DIAGNOSES: Based on preoperative images and intraoperative findings, both cases were diagnosed with Transverse testicular ectopia (TTE). The postoperative pathology report for the second patient revealed the presence of an in situ spermatogenic cell tumor in the ectopic testis. INTERVENTIONS: Preperitoneal tension-free repair of right inguinal hernia and resection of left cryptorchidism were performed on the 2 patients. OUTCOMES: Postoperative pathology of the first patient confirmed that the resected specimens contained tubal-like and uterine-like structures. The postoperative pathology of the second patient showed that the resected tissue consists of immature testis, epididymis, uterus and seminal vesicle glands, in which an in situ spermatogenic tumor could be seen in the testicular tissue. Postoperative diagnosis: left transversal testicular ectopia and right indirect inguinal hernia. LESSONS: The clinical misdiagnosis and mistreatment rate of TTE is very high. Once the patients with cryptorchidism complicated with inguinal hernia are found in clinic, the possibility of the disease must be considered. For the patients whose cryptorchidism does not descend into the ipsilateral scrotum and it is difficult to diagnose, laparoscopy can be used for both diagnosis and treatment. If a patient has both inguinal hernia and cryptorchidism, it is crucial to rule out a diagnosis of TTE to prevent misdiagnosis and inappropriate treatment.


Asunto(s)
Criptorquidismo , Hernia Inguinal , Neoplasias , Humanos , Masculino , Criptorquidismo/diagnóstico , Errores Diagnósticos , Hernia Inguinal/cirugía , Neoplasias/complicaciones , Testículo/cirugía
8.
J Virol ; 97(11): e0106723, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37855618

RESUMEN

IMPORTANCE: Many plant viruses are transmitted by insect vectors in a circulative manner. For efficient transmission, the entry of the virus from vector hemolymph into the primary salivary gland (PSG) is a step of paramount importance. Yet, vector components mediating virus entry into PSG remain barely characterized. Here, we demonstrate the role of clathrin-mediated endocytosis and early endosomes in begomovirus entry into whitefly PSG. Our findings unravel the key components involved in begomovirus transport within the whitefly body and transmission by their whitefly vectors and provide novel clues for blocking begomovirus transmission.


Asunto(s)
Begomovirus , Endocitosis , Hemípteros , Animales , Begomovirus/fisiología , Clatrina/metabolismo , Endosomas , Hemípteros/metabolismo , Hemípteros/virología , Enfermedades de las Plantas , Glándulas Salivales/metabolismo , Glándulas Salivales/virología
9.
Sci Data ; 10(1): 585, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673910

RESUMEN

Hymenoptera is an order accounting for a large proportion of species in Insecta, among which Chalcidoidea contains many parasitoid species of biocontrol significance. Currently, some species genomes in Chalcidoidea have been assembled, but the chromosome-level genomes of Aphelinidae are not yet available. Using Illumina, PacBio HiFi and Hi-C technologies, we assembled a genome assembly of Eretmocerus hayati (Aphelinidae, Hymenoptera), a worldwide biocontrol agent of whiteflies, at the chromosome level. The assembled genome size is 692.1 Mb with a contig N50 of 7.96 Mb. After Hi-C scaffolding, the contigs was assembled onto four chromosomes with a mapping rate of > 98%. The scaffold N50 length is 192.5 Mb, and Benchmarking Universal Single-Copy Orthologues (BUSCO) value is 95.9%. The genome contains 370.8 Mb repeat sequences and total of 24471 protein coding genes. P450 gene families were identified and analyzed. In conclusion, our chromosome-level genome assembly provides valuable support for future research on the evolution of parasitoid wasps and the interaction between hosts and parasitoid wasps.


Asunto(s)
Genoma , Avispas , Animales , Benchmarking , Avispas/genética
10.
Sci Rep ; 13(1): 13368, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591985

RESUMEN

To investigate the mechanical properties of fractured dolomite, this study analyzed the fracture characteristics (dip angle, length, position, quantity) using the Pearson coefficient and MIC coefficient. Subsequently, the data pertaining to fracture characteristics is preprocessed using a third-degree polynomial, and a three-classification strategy is implemented to improve the logistic regression algorithm to establish the strength prediction model of fractured dolomite. Furthermore, the significance order of the impact of fracture characteristics on rock strength was determined using the numerical simulation software PFC3D, and the dip angle effect was explained from the perspective of internal fracture propagation within the rock. The results show that: (1) When the regularization coefficient λ = 10,000, the algorithm has the highest prediction accuracy and the strongest model generalization ability. (2) The numerical simulation analysis software PFC3D can accurately invert rock failure process and characteristics, and the order of influence of fracture characteristics on rock strength is dip angle > length > position.

11.
iScience ; 26(6): 106927, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37305698

RESUMEN

The objective of this study is to develop a device to mimic a microfluidic system of human arterial blood vessels. The device combines fluid shear stress (FSS) and cyclic stretch (CS), which are resulting from blood flow and blood pressure, respectively. The device can reveal real-time observation of dynamic morphological change of cells in different flow fields (continuous flow, reciprocating flow and pulsatile flow) and stretch. We observe the effects of FSS and CS on endothelial cells (ECs), including ECs align their cytoskeleton proteins with the fluid flow direction and paxillin redistribution to the cell periphery or the end of stress fibers. Thus, understanding the morphological and functional changes of endothelial cells on physical stimuli can help us to prevent and improve the treatment of cardiovascular diseases.

12.
Int J Health Sci (Qassim) ; 17(3): 3-10, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37151745

RESUMEN

Objectives: In this study, we implemented a structure-based virtual screening protocol in search of natural bioactive compounds in Clitoria ternatea that could inhibit the viral Mpro. Methods: A library of twelve main bioactive compounds in C. ternatea was created from PubChem database by minimizing ligand structure in PyRx software to increase the ligand flexibility. Molecular docking studies were performed by targeting Mpro (PDB ID: 6lu7) via Discovery Studio Visualiser and PyRx platforms. Top hits compounds were then selected to study their Adsorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug likeness properties through pkCSM pharmacokinetics tool to understand the stability, interaction, conformational changes, and pharmaceutical relevant parameters. Results: This investigation found that, in the molecular docking simulation, four bioactive compounds (procyanidin A2 [-9.3 kcal/mol], quercetin-3-rutinoside [-8.9 kcal/mol], delphinidin-3-O-glucoside [-8.3 kcal/mol], and ellagic acid [-7.4 kcal/mol]) showed producing the strongest binding affinity to the Mpro of severe acute respiratory syndrome coronavirus 2, as compared to positive control (N3 inhibitor) (-7.5 kcal/mol). These binding energies were found to be favorable for an efficient docking and resultant. In addition, the stability of quercetin-3-rutinoside and ellagic acid is higher without any unfavorable bond. The ADMET and drug likeness of these two compounds were found that they are considered an effective and safe coronavirus disease 2019 (COVID-19) inhibitors through Lipinski's Rule, absorption, distribution, metabolism, and toxicity properties. Conclusion: From these results, it was concluded that C. ternatea possess potential therapeutic properties against COVID-19.

13.
Mol Carcinog ; 62(9): 1249-1262, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37191369

RESUMEN

Small molecule degraders of small ubiquitin-related modifier 1 (SUMO1) induce SUMO1 degradation in colon cancer cells and inhibits the cancer cell growth; however, it is unclear how SUMO1 degradation leads to the anticancer activity of the degraders. Genome-wide CRISPR-Cas9 knockout screen has identified StAR-related lipid transfer domain containing 7 (StarD7) as a critical gene for the degrader's anticancer activity. Here, we show that both StarD7 mRNA and protein are overexpressed in human colon cancer and its knockout significantly reduces colon cancer cell growth and xenograft progression. The treatment with the SUMO1 degrader lead compound HB007 reduces StarD7 mRNA and protein levels and increases endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production in colon cancer cells and three-dimensional (3D) organoids. The study further provides a novel mechanism of the compound anticancer activity that SUMO1 degrader-induced decrease of StarD7 occur through degradation of SUMO1, deSUMOylation and degradation of T cell-specific transcription 4 (TCF4) and thereby inhibition of its transcription of StarD7 in colon cancer cells, 3D organoids and patient-derived xenografts (PDX).


Asunto(s)
Proteínas Portadoras , Neoplasias del Colon , Humanos , Proteínas Portadoras/genética , Especies Reactivas de Oxígeno/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , ARN Mensajero , Estrés del Retículo Endoplásmico , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Factor de Transcripción 4/metabolismo
14.
Org Lett ; 25(15): 2739-2744, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37042617

RESUMEN

Both azido (N3) and trifluoromethyl (CF3) groups are key moieties of numerous valuable molecules that are extensively applied in drug discovery, chemical biology, and synthetic chemistry. However, the asymmetric construction of chiral quaternary stereocenters bearing both N3 and CF3 groups is still unexplored. Herein, we report a kind of bench-stable and easily adjustable benziodazolone-based azidating reagents. These reagents were used to achieve an enantioselective copper-catalyzed azidation of N-unprotected 3-trifluoromethylated oxindoles to provide diverse enantioenriched 3-N3-3-CF3 oxindoles.

15.
Angew Chem Int Ed Engl ; 62(18): e202302521, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36891989

RESUMEN

Organic nitrates are broadly applied as pharmaceuticals (acting as efficient nitric oxide donor), energetic materials, building blocks in organic synthesis, etc. However, practical and direct methods to access organic nitrates efficiently are still rare, mainly due to the lack of powerful nitrooxylating reagents. Herein, we report bench-stable and highly reactive noncyclic hypervalent iodine nitrooxylating reagents, oxybis(aryl-λ3 -iodanediyl) dinitrates (OAIDNs, 2), which are prepared just by using aryliodine diacetate and HNO3 . The reagents are used to achieve a mild and operationally simple protocol to access diverse organic nitrates. By employing of 2, zinc-catalyzed regioselective nitrooxylation of cyclopropyl silyl ethers is realized efficiently to access the corresponding ß-nitrooxy ketones with high functional-group tolerance. Moreover, a series of direct and catalyst-free nitrooxylations of enolizable C-H bonds are carried out smoothly to afford the desired organic nitrates within minutes by just mixing the substrates with 2 in dichloromethane.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 122021, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36283209

RESUMEN

A novel fluorescent sensor was developed in this study based on glutathione-functionalized graphene quantum dots (GQDs@GSH) to detect organophosphorus pesticide residues in Radix Angelica Sinensis. GQDs@GSH was synthesized by a one-step pyrolysis method with a fluorescence quantum yield as high as 33.9% and its structure was characterized by transmission electron microscopy and X-ray photoelectron spectroscopy. GQDs@GSH exhibited excellent fluorescence property showing strong blue fluorescence under UV irradiation. The fluorescence of GQDs@GSH could be quenched by Fe3+ by electron transfer and the quenched fluorescence could be recovered due to the strong chelating and reducing ability of phytic acid (PA). Under the catalyzation of acetylcholinesterase (AChE) and choline oxidase (ChOx), acetylcholine (ACh) could be decomposed to H2O2, which could further oxidize Fe2+ to Fe3+ thus quenching the fluorescence of GQDs@GSH once again. Coumaphos, a kind of organophosphorus pesticide, could inhibit AChE activity, thus making the quenched fluorescence turn on again. Several parameters influencing the fluorescence response such as Fe3+, PA, ACh and coumaphos concentration, pH value and reaction time were optimized. Based on such a fluorescence "off-on-off-on" ngkmechanism, GQDs@GSH was successfully applied to the detection of coumaphos in Radix Angelica Sinensis. A good linear relationship between the fluorescence intensity and coumaphos concentration was obtained in the range of 0.1-10.0 µmol·L-1. By a standard addition method, the recoveries were measured to be 101.44-117.90% with RSDs lower than 1.98%. The biosensor system is simple, sensitive and accurate. It has a good application prospect in the detection of organophosphorus pesticide residues in traditional Chinese medicine and agricultural products, and also expanded the application scope for glutathione as a highly selective biological molecule.


Asunto(s)
Angelica sinensis , Grafito , Residuos de Plaguicidas , Plaguicidas , Puntos Cuánticos , Puntos Cuánticos/química , Grafito/química , Colorantes Fluorescentes/química , Compuestos Organofosforados , Acetilcolinesterasa , Peróxido de Hidrógeno , Cumafos , Glutatión/química
17.
Acta Biomater ; 163: 287-301, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36328121

RESUMEN

Within the heterogeneous tissue architecture, a comprehensive understanding of how cell shapes regulate cytoskeletal mechanics by adjusting focal adhesions (FAs) signals to correlate with the lineage commitment of mesenchymal stromal cells (MSCs) remains obscure. Here, via engineered extracellular matrices, we observed that the development of mature FAs, coupled with a symmetrical pattern of radial fiber bundles, appeared at the right-angle vertices in cells with square shape. While circular cells aligned the transverse fibers parallel to the cell edge, and moved them centripetally in a counter-clockwise direction, symmetrical bundles of radial fibers at the vertices of square cells disrupted the counter-clockwise swirling and bridged the transverse fibers to move centripetally. In square cells, the contractile force, generated by the myosin IIA-enriched transverse fibers, were concentrated and transmitted outwards along the symmetrical bundles of radial fibers, to the extracellular matrix through FAs, and thereby driving FA organization and maturation. The symmetrical radial fiber bundles concentrated the transverse fibers contractility inward to the linkage between the actin cytoskeleton and the nuclear envelope. The tauter cytoskeletal network adjusted the nuclear-actomyosin force balance to cause nuclear deformability and to increase nuclear translocation of the transcription co-activator YAP, which in turn modulated the switch in MSC commitment. Thus, FAs dynamically respond to geometric cues and remodel actin cytoskeletal network to re-distribute intracelluar tension towards the cell nucleus, and thereby controlling YAP mechanotransduction signaling in regulating MSC fate decision. STATEMENT OF SIGNIFICANCE: We decipher how cellular mechanics is self-organized depending on extracellular geometric features to correlate with mesenchymal stromal cell lineage commitment. In response to geometry constrains on cell morphology, symmetrical radial fiber bundles are assembled and clustered depending on the maturation state of focal adhesions and bridge with the transverse fibers, and thereby establishing the dynamic cytoskeletal network. Contractile force, generated by the myosin-IIA-enriched transverse fibers, is transmitted and dynamically drives the retrograde movement of the actin cytoskeletal network, which appropriately adjusts the nuclear-actomyosin force balance and deforms the cell nucleus for YAP mechano-transduction signaling in regulating mesenchymal stromal cell fate decision.


Asunto(s)
Actinas , Células Madre Mesenquimatosas , Actinas/metabolismo , Actomiosina/metabolismo , Mecanotransducción Celular , Forma de la Célula , Osteogénesis , Diferenciación Celular , Factores de Transcripción/metabolismo
18.
Pain Med ; 24(1): 89-98, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36066447

RESUMEN

BACKGROUND: The majority of existing clinical studies used active transcranial direct current stimulation (tDCS) over superficial areas of the pain neuromatrix to regulate pain, with conflicting results. Few studies have investigated the effect of tDCS on pain thresholds by focusing on targets in deep parts of the pain neuromatrix. METHODS: This study applied a single session of high-definition tDCS (HD-tDCS) targeting the anterior cingulate cortex (ACC) and used a parallel and sham-controlled design to compare the antinociceptive effects in healthy individuals by assessing changes in pain thresholds. Sixty-six female individuals (mean age, 20.5 ± 2.4 years) were randomly allocated into the anodal, cathodal, or sham HD-tDCS groups. The primary outcome of the study was pain thresholds (pressure pain threshold, heat pain threshold, and cold pain threshold), which were evaluated before and after stimulation through the use of quantitative sensory tests. RESULTS: Only cathodal HD-tDCS targeting the ACC significantly increased heat pain threshold (P < 0.05) and pressure pain threshold (P < 0.01) in healthy individuals compared with sham stimulation. Neither anodal nor cathodal HD-tDCS showed significant analgesic effects on cold pain threshold. Furthermore, no statistically significant difference was found in pain thresholds between anodal and sham HD-tDCS (P > 0.38). Independent of HD-tDCS protocols, the positive and negative affective schedule scores were decreased immediately after stimulation compared with baseline. CONCLUSIONS: The present study has found that cathodal HD-tDCS targeting the ACC provided a strong antinociceptive effect (increase in pain threshold), demonstrating a positive biological effect of HD-tDCS.


Asunto(s)
Umbral del Dolor , Estimulación Transcraneal de Corriente Directa , Adolescente , Adulto , Femenino , Humanos , Adulto Joven , Analgésicos , Giro del Cíngulo , Dolor , Umbral del Dolor/fisiología , Estimulación Transcraneal de Corriente Directa/métodos
19.
BMC Med Imaging ; 22(1): 210, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36451131

RESUMEN

OBJECTIVES: To investigate the correlation between the histopathology of the kidney and clinical indicators in patients with lupus nephritis (LN) using magnetic resonance imaging (MRI). METHODS: A total 50 female participants were enrolled in the study. Thirty patients with LN were divided into types 2, 3, 4, and 5, according to their pathological features. The control group consisted of 20 healthy female volunteers. Serum creatinine, C3, C1q, and anti-ds-DNA were measured. Conventional MRI, DTI, DWI, and BOLD scanning was performed to obtain the FA, ADC, and R2* values for the kidney. RESULTS: Compared with the control group, FA and the ADC were decreased in patients with LN, while the R2* value was increased (P < 0.05). The overall comparison of the SLEDAI (Activity index of systemic lupus erythematosus) score, total pathological score, AI, and serum creatinine C3 showed that these were significantly different between the two groups (P < 0.05). FA and the ADC were negatively correlated with urinary, blood ds-DNA, and serum creatinine and positively correlated with C1q (P < 0.05). The R2* value was positively correlated with urinary NGAL, blood ds-DNA, and serum creatinine (P < 0.05). FA and the ADC were negatively correlated with the SLEDAI score, total pathological score, AI, CI, nephridial tissue C3, and C1q. The R2* value was positively correlated with the SLEDAI score, total pathological score, AI, CI, nephridial tissue C3, and C1q (P < 0.05). CONCLUSIONS: MRI examination in female patients with LN was correlated with pathologic test results, which may have clinical significance in determining the disease's severity, treatment, and outcome.


Asunto(s)
Nefritis Lúpica , Humanos , Femenino , Nefritis Lúpica/diagnóstico por imagen , Creatinina , Complemento C1q , Riñón , Imagen por Resonancia Magnética , Hematuria
20.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361845

RESUMEN

Atherosclerosis is one of the main underlying causes of cardiovascular diseases (CVD). It is associated with chronic inflammation and intimal thickening as well as the involvement of multiple cell types including immune cells. The engagement of innate or adaptive immune response has either athero-protective or atherogenic properties in exacerbating or alleviating atherosclerosis. In atherosclerosis, the mechanism of action of immune cells, particularly monocytes, macrophages, dendritic cells, and B- and T-lymphocytes have been discussed. Immuno-senescence is associated with aging, viral infections, genetic predispositions, and hyperlipidemia, which contribute to atherosclerosis. Immune senescent cells secrete SASP that delays or accelerates atherosclerosis plaque growth and associated pathologies such as aneurysms and coronary artery disease. Senescent cells undergo cell cycle arrest, morphological changes, and phenotypic changes in terms of their abundances and secretome profile including cytokines, chemokines, matrix metalloproteases (MMPs) and Toll-like receptors (TLRs) expressions. The senescence markers are used in therapeutics and currently, senolytics represent one of the emerging treatments where specific targets and clearance of senescent cells are being considered as therapy targets for the prevention or treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Senescencia Celular , Humanos , Senescencia Celular/genética , Envejecimiento/metabolismo , Citocinas/metabolismo , Inflamación/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...