Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
1.
Acad Radiol ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38693025

RESUMEN

RATIONALE AND OBJECTIVES: Peritoneal recurrence is the predominant pattern of recurrence in advanced ovarian cancer (AOC) and portends a dismal prognosis. Accurate prediction of peritoneal recurrence and disease-free survival (DFS) is crucial to identify patients who might benefit from intensive treatment. We aimed to develop a predictive model for peritoneal recurrence and prognosis in AOC. METHODS: In this retrospective multi-institution study of 515 patients, an end-to-end multi-task convolutional neural network (MCNN) comprising a segmentation convolutional neural network (CNN) and a classification CNN was developed and tested using preoperative CT images, and MCNN-score was generated to indicate the peritoneal recurrence and DFS status in patients with AOC. We evaluated the accuracy of the model for automatic segmentation and predict prognosis. RESULTS: The MCNN achieved promising segmentation performances with a mean Dice coefficient of 84.3% (range: 78.8%-87.0%). The MCNN was able to predict peritoneal recurrence in the training (AUC 0.87; 95% CI 0.82-0.90), internal test (0.88; 0.85-0.92), and external test set (0.82; 0.78-0.86). Similarly, MCNN demonstrated consistently high accuracy in predicting recurrence, with an AUC of 0.85; 95% CI 0.82-0.88, 0.83; 95% CI 0.80-0.86, and 0.85; 95% CI 0.83-0.88. For patients with a high MCNN-score of recurrence, it was associated with poorer DFS with P < 0.0001 and hazard ratios of 0.1964 (95% CI: 0.1439-0.2680), 0.3249 (95% CI: 0.1896-0.5565), and 0.3458 (95% CI: 0.2582-0.4632). CONCLUSION: The MCNN approach demonstrated high performance in predicting peritoneal recurrence and DFS in patients with AOC.

2.
medRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38699371

RESUMEN

Rare and ultra-rare genetic conditions are estimated to impact nearly 1 in 17 people worldwide, yet accurately pinpointing the diagnostic variants underlying each of these conditions remains a formidable challenge. Because comprehensive, in vivo functional assessment of all possible genetic variants is infeasible, clinicians instead consider in silico variant pathogenicity predictions to distinguish plausibly disease-causing from benign variants across the genome. However, in the most difficult undiagnosed cases, such as those accepted to the Undiagnosed Diseases Network (UDN), existing pathogenicity predictions cannot reliably discern true etiological variant(s) from other deleterious candidate variants that were prioritized through N-of-1 efforts. Pinpointing the disease-causing variant from a pool of plausible candidates remains a largely manual effort requiring extensive clinical workups, functional and experimental assays, and eventual identification of genotype- and phenotype-matched individuals. Here, we introduce VarPPUD, a tool trained on prioritized variants from UDN cases, that leverages gene-, amino acid-, and nucleotide-level features to discern pathogenic variants from other deleterious variants that are unlikely to be confirmed as disease relevant. VarPPUD achieves a cross-validated accuracy of 79.3% and precision of 77.5% on a held-out subset of uniquely challenging UDN cases, respectively representing an average 18.6% and 23.4% improvement over nine traditional pathogenicity prediction approaches on this task. We validate VarPPUD's ability to discriminate likely from unlikely pathogenic variants on synthetic, GAN-generated candidate variants as well. Finally, we show how VarPPUD can be probed to evaluate each input feature's importance and contribution toward prediction-an essential step toward understanding the distinct characteristics of newly-uncovered disease-causing variants.

3.
J Fluoresc ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607528

RESUMEN

Colorectal cancer was one of the major malignant tumors threatening human health and ß-Gal was recognized as a principal biomarker for primary colorectal cancer. Thus, designing specific and efficient quantitative detection methods for measuring ß-Gal enzyme activity was of great clinical test significance. Herein, an ultrasensitive detection method based on Turn-on fluorescence probe (CS-ßGal) was reported for visualizing the detection of exogenous and endogenous ß-galactosidase enzyme activity. The test method possessed a series of excellent performances, such as a significant fluorescence enhancement (about 11.3-fold), high selectivity as well as superior sensitivity. Furthermore, under the optimal experimental conditions, a relatively low limit of detection down to 0.024 U/mL was achieved for fluorescence titration experiment. It was thanks to the better biocompatibility and low cytotoxicity, CS-ßGal had been triumphantly employed to visual detect endogenous and exogenous ß-Gal concentration variations in living cells with noteworthy anti-interference performance. More biologically significant was the fact that the application of CS-ßGal in BALB/c nude mice was also achieved successfully for monitoring endogenous ß-Gal enzyme activity.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38602968

RESUMEN

A high-performance planar structure metal-semiconductor-metal-type solar-blind photodetector (SBPD) was fabricated on the basis of (010)-plane ß-Ga2O3 thermally oxidized from nonpolar (110)-plane GaN. A full width at half maximum of 0.486° was achieved for the X-ray rocking curve associated with (020)-plane ß-Ga2O3, which is better than most reported results for the heteroepitaxially grown (-201)-plane ß-Ga2O3. As a result of the relatively high crystalline quality, a dark current as low as 6.30 × 10-12 A was achieved at 5 V, while the photocurrent reached 1.86 × 10-5 A under 254 nm illumination at 600 µW/cm2. As a result, the photo-to-dark current ratio, specific detectivity, responsivity, and external quantum efficiency were calculated to be 2.95 × 106, 2.39 × 1012 Jones, 3.72 A/W, and 1815%, respectively. Moreover, the SBPD showed excellent repeatability and stability in the time-dependent photoresponse characteristics with fast relaxation time constants for the rise and decay processes of only 0.238 and 0.062 s, respectively. This study provides a promising approach to fabricate the device-level (010)-plane ß-Ga2O3 film and a new way for the epitaxial growth of (010)-plane ß-Ga2O3 and (110)-plane GaN as mutual substrates.

5.
medRxiv ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38585886

RESUMEN

Alzheimer's disease (AD) manifests with varying progression rates across individuals, necessitating the understanding of their intricate patterns of cognition decline that could contribute to effective strategies for risk monitoring. In this study, we propose an innovative interpretable population graph network framework for identifying rapid progressors of AD by utilizing patient information from electronic health-related records in the UK Biobank. To achieve this, we first created a patient similarity graph, in which each AD patient is represented as a node; and an edge is established by patient clinical characteristics distance. We used graph neural networks (GNNs) to predict rapid progressors of AD and created a GNN Explainer with SHAP analysis for interpretability. The proposed model demonstrates superior predictive performance over the existing benchmark approaches. We also revealed several clinical features significantly associated with the prediction, which can be used to aid in effective interventions for the progression of AD patients.

6.
Photodiagnosis Photodyn Ther ; 46: 104085, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38614272

RESUMEN

BACKGROUND: Chronic wounds refer to those that can't reconstruct anatomical and physical functional integrity, and are usually associated with signs of microbial infection. Current therapies include debridement and dressing change, local or systemic application of antibiotics, and medical dressing care, which are not ideal for the healing of chronic wounds. OBJECTIVE: To explore the efficacy and safety of photodynamic therapy (ALA-PDT) for the treatment of chronic infectious wounds. MATERIALS AND METHODS: ALA-PDT was used in ten patients with persistent wound infections and systemic complications who did not respond to conventional treatment. 5 % ALA solution was applied to the wound surface after debridement, incubated for 3 h with light protection, and then irradiated with red light for 20 min. This procedure was repeated every two weeks, and any adverse reactions were recorded. After the end of three treatments, the patients were followed up for 3 months. RESULTS: Patients who exhibit resistance to traditional therapies demonstrate a favorable therapeutic outcome with ALA-PDT, although complications may impede wound healing. All participants successfully underwent ALA-PDT treatment and subsequent monitoring, with 90 % achieving complete healing. Common adverse reactions to ALA-PDT encompass treatment-related pain, temporary erythema, and swelling, all of which are well-tolerated by patients without enduring severe consequences. CONCLUSIONS: ALA-PDT proves to be an efficacious intervention for managing chronic wounds, irrespective of the presence of localized infections or systemic complications.

7.
Cancer Lett ; 592: 216903, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38670307

RESUMEN

High levels of acetyl-CoA are considered a key metabolic feature of metastatic cancers. However, the impacts of acetyl-CoA metabolic accumulation on cancer microenvironment remodeling are poorly understood. In this study, using human hepatocellular carcinoma (HCC) tissues and orthotopic xenograft models, we found a close association between high acetyl-CoA levels in HCCs, increased infiltration of tumor-associated neutrophils (TANs) in the cancer microenvironment and HCC metastasis. Cytokine microarray and enzyme-linked immunosorbent assays (ELISA) revealed the crucial role of the chemokine (C-X-C motif) ligand 1(CXCL1). Mechanistically, acetyl-CoA accumulation induces H3 acetylation-dependent upregulation of CXCL1 gene expression. CXCL1 recruits TANs, leads to neutrophil extracellular traps (NETs) formation and promotes HCC metastasis. Collectively, our work linked the accumulation of acetyl-CoA in HCC cells and TANs infiltration, and revealed that the CXCL1-CXC receptor 2 (CXCR2)-TANs-NETs axis is a potential target for HCCs with high acetyl-CoA levels.

8.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659732

RESUMEN

Colorectal cancer (CRC) is the third most diagnosed cancer and the second deadliest cancer worldwide representing a major public health problem. In recent years, increasing evidence has shown that microRNA (miRNA) can control the expression of targeted human messenger RNA (mRNA) by reducing their abundance or translation, acting as oncogenes or tumor suppressors in various cancers, including CRC. Due to the significant up-regulation of oncogenic miRNAs in CRC, elucidating the underlying mechanism and identifying dysregulated miRNA targets may provide a basis for improving current therapeutic interventions. In this paper, we proposed Gra-CRC-miRTar, a pre-trained nucleotide-to-graph neural network framework, for identifying potential miRNA targets in CRC. Different from previous studies, we constructed two pre-trained models to encode RNA sequences and transformed them into de Bruijn graphs. We employed different graph neural networks to learn the latent representations. The embeddings generated from de Bruijn graphs were then fed into a Multilayer Perceptron (MLP) to perform the prediction tasks. Our extensive experiments show that Gra-CRC-miRTar achieves better performance than other deep learning algorithms and existing predictors. In addition, our analyses also successfully revealed 172 out of 201 functional interactions through experimentally validated miRNA-mRNA pairs in CRC. Collectively, our effort provides an accurate and efficient framework to identify potential miRNA targets in CRC, which can also be used to reveal miRNA target interactions in other malignancies, facilitating the development of novel therapeutics.

9.
Sensors (Basel) ; 24(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38544152

RESUMEN

Analysis of brain signals is essential to the study of mental states and various neurological conditions. The two most prevalent noninvasive signals for measuring brain activities are electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). EEG, characterized by its higher sampling frequency, captures more temporal features, while fNIRS, with a greater number of channels, provides richer spatial information. Although a few previous studies have explored the use of multimodal deep-learning models to analyze brain activity for both EEG and fNIRS, subject-independent training-testing split analysis remains underexplored. The results of the subject-independent setting directly show the model's ability on unseen subjects, which is crucial for real-world applications. In this paper, we introduce EF-Net, a new CNN-based multimodal deep-learning model. We evaluate EF-Net on an EEG-fNIRS word generation (WG) dataset on the mental state recognition task, primarily focusing on the subject-independent setting. For completeness, we report results in the subject-dependent and subject-semidependent settings as well. We compare our model with five baseline approaches, including three traditional machine learning methods and two deep learning methods. EF-Net demonstrates superior performance in both accuracy and F1 score, surpassing these baselines. Our model achieves F1 scores of 99.36%, 98.31%, and 65.05% in the subject-dependent, subject-semidependent, and subject-independent settings, respectively, surpassing the best baseline F1 scores by 1.83%, 4.34%, and 2.13% These results highlight EF-Net's capability to effectively learn and interpret mental states and brain activity across different and unseen subjects.


Asunto(s)
Encéfalo , Espectroscopía Infrarroja Corta , Humanos , Espectroscopía Infrarroja Corta/métodos , Aprendizaje Automático , Electroencefalografía/métodos , Cabeza
10.
Bioresour Technol ; 399: 130597, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493940

RESUMEN

The development of integrated co-production of multiple high-purity carotenoids from microalgal cells holds considerable significance for the valorization of microalgae. In this study, the economical microalga Nannochloropsis oceanica was identified as an accumulator of violaxanthin cycle carotenoids, including violaxanthin, antheraxanthin, and zeaxanthin. Notably, a novel and competent approach for the integrated co-production of violaxanthin cycle carotenoids was explored, encompassing four steps: microalgal cultivation, solvent extraction, octadecylsilyl open-column chromatography, and ethanol precipitation. Under optimal co-production conditions, the purities of the obtained violaxanthin, antheraxanthin, and zeaxanthin all exceeded 92%, with total recovery rates of approximately 51%, 40%, and 60%, respectively. Utilizing nuclear magnetic resonance techniques, the purified violaxanthin, antheraxanthin, and zeaxanthin were identified as all-trans-violaxanthin, all-trans-antheraxanthin, and all-trans-zeaxanthin, respectively. This method held significance for the multiproduct biorefinery of the microalga N. oceanica and carried potential future implications for the violaxanthin cycle carotenoids.


Asunto(s)
Carotenoides , Xantófilas , Zeaxantinas , Xantófilas/química
11.
Cell Signal ; 118: 111142, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508350

RESUMEN

OBJECTIVE: To elucidate the molecular mechanism of overloading-induced osteoarthritis (OA) and to find a novel therapeutic target. METHODS: We utilized human cartilage specimens, mouse chondrocytes, a destabilization of the medial meniscus (DMM) mouse model, and a mouse hindlimb weight-bearing model to validate the role of overloading on chondrocyte senescence and OA development. Then, we observed the effect of PIEZO1-miR-155-5p-GDF6-SMAD2/3 signaling axis on the preservation of joint metabolic homeostasis under overloading in vivo, in vitro and ex vivo by qPCR, Western blot, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, immunofluorescence, SA-ß-gal staining, CCK8 assay, et al. Finally, we verified the therapeutic effects of intra-articular injection of miR-155-5p inhibitor or recombinant GDF6 on the murine overloading-induced OA models. RESULTS: Chondrocytes sensesed the mechanical overloading through PIEZO1 and up-regulated miR-155-5p expression. MiR-155-5p mimics could copy the effects of overloading-induced chondrocyte senescence and OA. Additionally, miR-155-5p could suppress the mRNA expression of Gdf6-Smad2/3 in various tissues within the joint. Overloading could disrupt joint metabolic homeostasis by downregulating the expression of anabolism indicators and upregulating the expression of catabolism indicators in the chondrocytes and synoviocytes, while miR-155-5p inhibition or GDF6 supplementation could exert an antagonistic effect by preserving the joint homeostasis. Finally, in the in vivo overloading models, intra-articular injection of miR-155-5p inhibitor or recombinant GDF6 could significantly mitigate the severity of impending OA and lessened the progression of existing OA. CONCLUSION: GDF6 overexpression or miR-155-5p inhibition could attenuate overloading-induced chondrocyte senescence and OA through the PIEZO1-miR-155-5p-GDF6-SMAD2/3 signaling pathway. Our study provides a new therapeutic target for the treatment of overloading-induced OA.


Asunto(s)
MicroARNs , Osteoartritis , Animales , Humanos , Ratones , Apoptosis , Condrocitos/metabolismo , Factor 6 de Diferenciación de Crecimiento/metabolismo , Factor 6 de Diferenciación de Crecimiento/farmacología , Factor 6 de Diferenciación de Crecimiento/uso terapéutico , Canales Iónicos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Osteoartritis/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Estrés Mecánico
12.
Mater Horiz ; 11(8): 1975-1988, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38353589

RESUMEN

Flexible tactile sensors have become important as essential tools for facilitating human and object interactions. However, the materials utilized for the electrodes of capacitive tactile sensors often cannot simultaneously exhibit high conductivity, low modulus, and strong adhesiveness. This limitation restricts their application on flexible interfaces and results in device failure due to mechanical mismatch. Herein, we report an ultra-low modulus, highly conductive, and adhesive elastomer and utilize it to fabricate a microstructure-coupled multifunctional flexible tactile sensor. We prepare a supramolecular conductive composite film (SCCF) as the electrode of the tactile sensor using a supramolecular deep eutectic solvent, polyvinyl alcohol (PVA) solution, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and MXene suspension. We employ a polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) film containing 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM:TFSI) as the dielectric layer to fabricate capacitive sensors with an electrical double layer structure. Furthermore, we enhance the performance of the device by incorporating coupled pyramid and dome microstructures, which endow the sensor with multi-directional force detection. Our SCCF exhibits extremely high conductivity (reaching 710 S cm-1), ultra-low modulus (0.8 MPa), and excellent interface adhesion strength (>120 J m-2). Additionally, due to the outstanding conductivity and unique structure of the SCCF, it possesses remarkable electromagnetic shielding ability (>50 dB). Moreover, our device demonstrates a high sensitivity of up to 1756 kPa-1 and a wide working range reaching 400 kPa, combining these attributes with the requirements of an ultra-soft human-machine interface to ensure optimal contact between the sensor and interface materials. This innovative and flexible tactile sensor holds great promise and potential for addressing various and complex demands of human-machine interaction.

13.
Immunology ; 172(1): 127-143, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38332630

RESUMEN

Myeloid-derived suppressor cells (MDSCs) increase in number and gain immunosuppressive functions in tumours and many other pathological conditions. MDSCs are characterized by their strong T-cell immunosuppressive capacity. The effects that MDSCs may have on B cells, especially within the tumour microenvironment, are less well understood. Here, we report that either monocytic MDSCs or polymorphonuclear MDSCs can promote increases in interleukin (IL)-10-expressing CD19hiFcγRIIbhi regulatory B cells in vitro and in vivo. Splenic transitional-1, -2, and -3 cells and marginal zone B cells, but not follicular B cells, differentiate into IL-10-expressing CD19hiFcγRIIbhi regulatory B cells. The adoptive transfer of CD19hiFcγRIIbhi regulatory B cells via tail vein injection can promote subcutaneous 3LL tumour growth in mice. The expression of programmed death-ligand 1 on MDSCs was found to be strongly associated with CD19hiFcγRIIbhi regulatory B cell population expansion. Furthermore, the frequency of circulating CD19+FcγRIIhi regulatory B cells was significantly increased in advanced-stage lung cancer patients. Our results unveil a critical role of MDSCs in regulatory B-cell differentiation and population expansion in lung cancer patients.


Asunto(s)
Linfocitos B Reguladores , Neoplasias Pulmonares , Células Supresoras de Origen Mieloide , Ratones , Humanos , Animales , Linfocitos B Reguladores/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Antígeno B7-H1/metabolismo , Diferenciación Celular , Ratones Endogámicos C57BL , Microambiente Tumoral
14.
Stress Biol ; 4(1): 16, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376647

RESUMEN

The type VI secretion system (T6SS) is a powerful bacterial molecular weapon that can inject effector proteins into prokaryotic or eukaryotic cells, thereby participating in the competition between bacteria and improving bacterial environmental adaptability. Although most current studies of the T6SS have focused on animal bacteria, this system is also significant for the adaptation of plant-associated bacteria. This paper briefly introduces the structure and biological functions of the T6SS. We summarize the role of plant-associated bacterial T6SS in adaptability to host plants and the external environment, including resistance to biotic stresses such as host defenses and competition from other bacteria. We review the role of the T6SS in response to abiotic factors such as acid stress, oxidation stress, and osmotic stress. This review provides an important reference for exploring the functions of the T6SS in plant-associated bacteria. In addition, characterizing these anti-stress functions of the T6SS may provide new pathways toward eliminating plant pathogens and controlling agricultural losses.

15.
Sci Data ; 11(1): 244, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413596

RESUMEN

Infectious disease outbreaks transcend the medical and public health realms, triggering widespread panic and impeding socio-economic development. Considering that self-limiting diarrhoea of sporadic cases is usually underreported, the Salmonella outbreak (SO) study offers a unique opportunity for source tracing, spatiotemporal correlation, and outbreak prediction. To summarize the pattern of SO and estimate observational epidemiological indicators, 1,134 qualitative reports screened from 1949 to 2023 were included in the systematic review dataset, which contained a 506-study meta-analysis dataset. In addition to the dataset comprising over 50 columns with a total of 46,494 entries eligible for inclusion in systematic reviews or input into prediction models, we also provide initial literature collection datasets and datasets containing socio-economic and climate information for relevant regions. This study has a broad impact on advancing knowledge regarding epidemic trends and prevention priorities in diverse salmonellosis outbreaks and guiding rational policy-making or predictive modeling to mitigate the infringement upon the right to life imposed by significant epidemics.


Asunto(s)
Brotes de Enfermedades , Intoxicación Alimentaria por Salmonella , Infecciones por Salmonella , Humanos , China/epidemiología , Recolección de Datos , Salmonella , Intoxicación Alimentaria por Salmonella/epidemiología , Infecciones por Salmonella/epidemiología , Revisiones Sistemáticas como Asunto , Metaanálisis como Asunto
16.
J Hazard Mater ; 466: 133542, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262317

RESUMEN

Oil spills are a global environmental protection challenge, and traditional adsorption materials have poor effect on low temperature and high viscosity marine oil spills. This article reports composite adsorption materials TDA/rGO@WS for viscous oil spills: loaded with rGO/TDA coating on a commercial biomass wood pulp sponge (WS), achieving Joule heating, photothermal effect and hydrophobic modification. The results showed that the TDA/rGO@WS has good photothermal conversion ability and Joule heating ability, and the temperature increased to 83.7 °C and 148 °C, respectively, under simulated solar irradiation and additional voltage at room temperature. The efficiency of adsorption at a low temperature of 5 °C increased by 22.41% at 1 sun and by 51.53% at 10 V. Temperature effectively reduced the viscosity of the offshore oil spill and ensures the efficient adsorption of oil spills at low temperatures promoted. The TDA/rGO@WS also showed good hydrophobicity (WCA=129°), excellent efficiency of water-oil separation (99.53%) and good adsorption capacity (9.4-13.68 g/g) for marine fuel oils. TDA/rGO@WS effectively solves the problem of cleaning up high-viscosity oil spills from ships in winter and polar waters, and proposes a new strategy for all-weather efficient treatment of oil spills at sea.

17.
Eur J Prev Cardiol ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38236144

RESUMEN

Homocysteine (Hcy) is a sulfur-containing nonessential amino acid derived from the intermediate metabolites of methionine. Methionine is obtained from dietary proteins, such as poultry, meat, eggs, seafood, and dairy products. Abnormalities in Hcy metabolic pathways, deficiencies in dietary methionine, folate, and vitamins B12, B6 and B2 and genetic defects, polymorphisms, or mutations in Hcy metabolism-related enzymes may lead to an increase in plasma Hcy levels. Generally, a plasma Hcy level higher than 10 µmol/L or 15 µmol/L has been defined as hyperhomocysteinemia (HHcy). An individual with essential hypertension complicated with HHcy is considered to have H-type hypertension (HTH). Currently, HHcy is considered a novel independent risk factor for various cardiovascular diseases. To provide a useful reference for clinicians, the research progress on Hcy, HHcy and HTH in recent years was systematically reviewed here, with a focus on the source and metabolic pathways of Hcy, plasma Hcy levels and influencing factors, detection methods for plasma Hcy levels, relationship between Hcy concentration and hypertension, pathogenesis of HTH, cardiovascular complications of HTH, and treatment of HTH.

18.
J Magn Reson Imaging ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38205712

RESUMEN

BACKGROUND: Accurate evaluation of the axillary lymph node (ALN) status is needed for determining the treatment protocol for breast cancer (BC). The value of magnetic resonance imaging (MRI)-based tumor heterogeneity in assessing ALN metastasis in BC is unclear. PURPOSE: To assess the value of deep learning (DL)-derived kinetic heterogeneity parameters based on BC dynamic contrast-enhanced (DCE)-MRI to infer the ALN status. STUDY TYPE: Retrospective. SUBJECTS: 1256/539/153/115 patients in the training cohort, internal validation cohort, and external validation cohorts I and II, respectively. FIELD STRENGTH/SEQUENCE: 1.5 T/3.0 T, non-contrast T1-weighted spin-echo sequence imaging (T1WI), DCE-T1WI, and diffusion-weighted imaging. ASSESSMENT: Clinical pathological and MRI semantic features were obtained by reviewing histopathology and MRI reports. The segmentation of the tumor lesion on the first phase of T1WI DCE-MRI images was applied to other phases after registration. A DL architecture termed convolutional recurrent neural network (ConvRNN) was developed to generate the KHimage (kinetic heterogeneity of DCE-MRI image) score that indicated the ALN status in patients with BC. The model was trained and optimized on training and internal validation cohorts, tested on two external validation cohorts. We compared ConvRNN model with other 10 models and the subgroup analyses of tumor size, magnetic field strength, and molecular subtype were also evaluated. STATISTICAL TESTS: Chi-squared, Fisher's exact, Student's t, Mann-Whitney U tests, and receiver operating characteristics (ROC) analysis were performed. P < 0.05 was considered significant. RESULTS: The ConvRNN model achieved area under the curve (AUC) of 0.802 in the internal validation cohort and 0.785-0.806 in the external validation cohorts. The ConvRNN model could well evaluate the ALN status of the four molecular subtypes (AUC = 0.685-0.868). The patients with larger tumor sizes (>5 cm) were more susceptible to ALN metastasis with KHimage scores of 0.527-0.827. DATA CONCLUSION: A ConvRNN model outperformed traditional models for determining the ALN status in patients with BC. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

19.
Protein Sci ; 33(1): e4865, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38073135

RESUMEN

High resolution antibody-antigen structures provide critical insights into immune recognition and can inform therapeutic design. The challenges of experimental structural determination and the diversity of the immune repertoire underscore the necessity of accurate computational tools for modeling antibody-antigen complexes. Initial benchmarking showed that despite overall success in modeling protein-protein complexes, AlphaFold and AlphaFold-Multimer have limited success in modeling antibody-antigen interactions. In this study, we performed a thorough analysis of AlphaFold's antibody-antigen modeling performance on 427 nonredundant antibody-antigen complex structures, identifying useful confidence metrics for predicting model quality, and features of complexes associated with improved modeling success. Notably, we found that the latest version of AlphaFold improves near-native modeling success to over 30%, versus approximately 20% for a previous version, while increased AlphaFold sampling gives approximately 50% success. With this improved success, AlphaFold can generate accurate antibody-antigen models in many cases, while additional training or other optimization may further improve performance.


Asunto(s)
Complejo Antígeno-Anticuerpo , Benchmarking
20.
Artículo en Inglés | MEDLINE | ID: mdl-37752407

RESUMEN

Magnetic resonance imaging (MRI) is a non-invasive, radiation-free imaging technique widely used for disease detection and therapeutic evaluation due to its infinite penetration depth. Magnetic nanoparticles (MNPs) have unique magnetic and physicochemical properties, making them ideal as contrast agents for MRI. However, the in vivo toxicity of MNPs, resulting from metal ion leakage and long-term accumulation in the reticuloendothelial system (RES), limits their clinical application. To overcome these challenges, there is considerable interest in the development of renal-clearable MNPs that can be completely cleared through the kidney, reducing retention time and potential toxic risks. In this review, we provide an overview of recent advancements in the development of renal-clearable MNPs for disease imaging and treatment. We discuss the factors influencing renal clearance, summarize the types of renal-clearable MNPs, their synthesis methods, and biomedical applications. This review aims to offer comprehensive information for the design and clinical translation of renal-clearable MNPs. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Medios de Contraste/química , Nanotecnología , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...