Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2401097, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38800937

RESUMEN

The utilization of surface plasmon resonance (SPR) sensors for real-time label-free molecular interaction analysis is already being employed in the fields of in vitro diagnostics and biomedicine. However, the widespread application of SPR technology is hindered by its limited detection throughput and high cost. To address this issue, this study introduces a novel multifunctional MetaSPR high-throughput microplate biosensor featuring 3D nanocups array structure, aiming to achieve high-throughput screening with a reduced cost and enhanced speed. Different types of MetaSPR sensors and analytical detection methods have been developed for accurate antibody subtype identification, epitope binding, affinity determination, antibody collocation, and quantitative detection, greatly promoting the screening and analysis of early-stage antibody drugs. The MetaSPR platform combined with nano-enhanced particles amplifies the detection signal and improves the detection sensitivity, making it more convenient, sensitive, and efficient than traditional ELISA. The findings demonstrate that the MetaSPR biosensor is a new practical technology detection platform that can improve the efficiency of biomolecular interaction studies with unlimited potential for new drug development.

2.
ACS Omega ; 9(14): 15753-15767, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617672

RESUMEN

Tumors are one of the main diseases threatening human life and health. The emergence of nanotechnology in recent years has introduced a novel therapeutic avenue for addressing tumors. Through the amalgamation of nanotechnology's inherent attributes with those of natural enzymes, nanozymes have demonstrated the ability to initiate catalytic reactions, modulate the biological microenvironment, and facilitate the adoption of multifaceted therapeutic approaches, thereby exhibiting considerable promise in the realm of cancer treatment. In this Review, the application of nanozymes in chemodynamic therapy, radiotherapy, photodynamic therapy, photothermal therapy, and starvation therapy are summarized. Moreover, a detailed discussion regarding the mechanism of conferring physiotherapeutic functionality upon catalytic nanosystems is provided. It is posited that this innovative catalytic treatment holds significant potential to play a crucial role within the domain of nanomedicine.

3.
Drug Dev Ind Pharm ; 50(5): 410-419, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38497274

RESUMEN

OBJECTIVES: To develop and evaluate a novel human stratum corneum (SC) mimetic phospholipid vesicle-based permeation assay (PVPASC) model for in vitro permeation studies. SIGNIFICANCE: Due to the increasing restrictions on the use of human and animal skins, artificial skin models have attracted substantial interest in pharmaceuticals and cosmetic industries. In this study, a modified PVPASC model containing both SC lipids and proteins was developed. METHODS: The PVPASC model was optimized by altering the lipid composition and adding keratin in the formulation of large liposomes. The barrier properties were monitored by measuring the electrical resistance (ER) and permeability of Rhodamine B (RB). The modified PVPASC model was characterized in terms of the surface topography, solvent influence and storage stability. The permeation studies of the active components in Compound Nanxing Zhitong Plaster (CNZP) were performed to examine the capability of PVPASC in the application of skin penetration. RESULTS: The ER and Papp values of RB obtained from the optimized PVPASC model indicated a similar barrier property to porcine ear skin. Scanning electron microscope analysis demonstrated a mimic 'brick-and-mortar' structure. The PVPASC model can be stored for three weeks at -20 °C, and withstand the presence of different receptor medium for 24 h. The permeation studies of the active components demonstrated a good correlation (r2 = 0.9136) of Papp values between the drugs' permeation through the PVPASC model and porcine ear skin. CONCLUSION: Keratin contained composite phospholipid vesicle-based permeation assay models have been proven to be potential skin tools in topical/transdermal permeation studies.


Asunto(s)
Permeabilidad , Fosfolípidos , Absorción Cutánea , Humanos , Fosfolípidos/química , Absorción Cutánea/efectos de los fármacos , Absorción Cutánea/fisiología , Porcinos , Permeabilidad/efectos de los fármacos , Animales , Liposomas , Administración Cutánea , Epidermis/metabolismo , Epidermis/efectos de los fármacos , Piel/metabolismo , Piel/efectos de los fármacos , Piel Artificial , Rodaminas/farmacocinética , Rodaminas/química , Rodaminas/administración & dosificación
4.
Biosens Bioelectron ; 248: 115974, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171221

RESUMEN

The accumulation of trace amounts of certain small molecules in food poses considerable human health challenges, including the potential for carcinogenesis and mutagenesis. Here, an ultrasensitive gold-platinum nanoflower-coupled metasurface plasmon resonance (MetaSPR) (APNMSPR) biosensor, based on a competitive immunoassay, was developed for the multiplexed and rapid quantitative analysis of trace small molecules in eggs, offering timely monitoring of food safety. This one-step biosensor can be integrated into either a newly designed detachable high-throughput MetaSPR chip-strip plate device or a standard 96-well plate for multiplexed small-molecule detection within a single egg. The limits of detection were 0.81, 1.12, and 1.74 ppt for florfenicol, fipronil, and enrofloxacin, respectively, demonstrating up to 1000-fold increased sensitivity and a 15-fold reduction in analysis time compared with those of traditional methods. The results obtained using the APNMSPR biosensor showed a strong correlation with those obtained using liquid chromatography-tandem mass spectrometry. The APNMSPR biosensor holds immense promise for the multiplexed, highly sensitive, and rapid quantitative analysis of small molecules for applications in food safety control, early diagnosis, and environmental monitoring.


Asunto(s)
Técnicas Biosensibles , Humanos , Técnicas Biosensibles/métodos , Resonancia por Plasmón de Superficie/métodos , Análisis de Peligros y Puntos de Control Críticos , Oro/química , Huevos , Inmunoensayo/métodos
5.
J Control Release ; 361: 871-884, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37532149

RESUMEN

The excessive inflammatory response is known to be a major challenge for diabetic wound healing, while bacteria secreted toxin, α-hemolysin (Hlα), was recently reported to prolong inflammation and delay diabetic wound healing. In this study, we designed a red blood cell membrane (RBCM)-mimicking liposome containing curcumin (named RC-Lip) for the treatment of diabetic wounds. RC-Lips were successfully fabricated using the thin film dispersion method, and the fusion of RBC membrane with the liposomal membrane was confirmed via surface protein analysis. RC-Lips efficiently adsorbed Hlα, thereby reducing the damage and pro-apoptotic effects of Hlα on keratinocytes. Furthermore, they remarkably facilitated liposome uptake into macrophages with advanced curcumin release and regulation of M2 macrophage polarization. In a diabetic mouse and infected wound model, RC-Lips treatment significantly promoted wound healing and re-epithelialization while downregulating interleukin-1ß (IL-1ß) and upregulating interleukin-10 (IL-10). In summary, the results showed that the spongiform RC-Lips effectively modulate the inflammatory response after adsorbing Hlα and regulating M2 macrophage polarization, leading to a significant promotion of wound healing in diabetic mice. Hence, this study provides a prospective strategy of efficiently mediating inflammatory response for diabetic wounds.


Asunto(s)
Curcumina , Diabetes Mellitus Experimental , Ratones , Animales , Curcumina/uso terapéutico , Curcumina/farmacología , Liposomas , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Cicatrización de Heridas , Eritrocitos/metabolismo
6.
Eur J Pharm Sci ; 183: 106401, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36750147

RESUMEN

Terpenes are usually used as penetration enhancers (PE) for transdermal drug delivery (TDD) of various molecules. However, TDD of hydrophilic macromolecules is becoming an urgent challenge due to their potent activities. The aim of this study was to investigate the potential application of ß-caryophyllene (ß-CP), a sequiterpene, as PE for TDD of hydrophilic macromolecules for the first time. Commonly used PEs, namely azone and 1,8-cineole (1,8-CN), were applied as controls. Transepidermal water loss (TEWL) analysis revealed that the reduction of skin barrier function caused by ß-CP was reversible. Transdermal experiments showed that when skin was treated with ß-CP or azone, there was a significant permeation-enhancing effect on fluorescein isothiocyanate (FITC) and FITC-dextran with different molecular weight (MW) of 4k or 10k. CLSM analysis confirmed that ß-CP and azone can facilitate the penetration of FD-4k through epidermis and dermis. However, the cytotoxicity of azone against epidermal keratinocytes was significantly higher than ß-CP and 1,8-CN. Additionally, application of ß-CP and 1,8-CN didn't increase erythema index (EI) but the EI values of azone group increased significantly and irreversibly, indicating the high biocompatibility of the natural terpenes. ß-CP had better permeation-enhancing effect and higher stratum corneum (SC) retention than 1,8-CN due to its increased carbon chain length and lipophilicity, as further demonstrated by molecular dynamics (MD) simulation studies. Skin electrical resistance (SER) and attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) studies revealed a significant interfering effect of ß-CP on SC lipids. Taken together, ß-CP exhibited significant penetration enhancement of hydrophilic macromolecules due to its SC retention and SC lipid fluidization ability.


Asunto(s)
Absorción Cutánea , Terpenos , Terpenos/química , Piel/metabolismo , Epidermis/química , Epidermis/metabolismo , Administración Cutánea
7.
Adv Drug Deliv Rev ; 195: 114764, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841332

RESUMEN

Impaired wound healing in chronic wounds has been a significant challenge for clinicians and researchers for decades. Traditional herbal medicine (THM) has a long history of promoting wound healing, making them culturally accepted and trusted by a great number of people in the world. However, for a long time, the understanding of herbal medicine has been limited and incomplete, particularly in the allopathic medicine-dominated research system. The therapeutic effects of individual components isolated from THM are found less pronounced compared to synthetic chemical medicine, and the clinical efficacy is always inferior to herbs. In the present article, we review and discuss underlying mechanisms of the skin microbiome involved in the wound healing process; THM in regulating immune responses and commensal microbiome. We additionally propose few pioneer ideas and studies in the development of therapeutic strategies for controlled delivery of herbal medicine. This review aims to promote wound care with a focus on wound microbiome, immune response, and topical drug delivery systems. Finally, future development trends, challenges, and research directions are discussed.


Asunto(s)
Microbiota , Plantas Medicinales , Humanos , Cicatrización de Heridas , Piel , Extractos Vegetales/farmacología , Inmunidad
8.
Burns Trauma ; 10: tkac014, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35611318

RESUMEN

Acute and chronic wound infection has become a major worldwide healthcare burden leading to significantly high morbidity and mortality. The underlying mechanism of infections has been widely investigated by scientist, while standard wound management is routinely been used in general practice. However, strategies for the diagnosis and treatment of wound infections remain a great challenge due to the occurrence of biofilm colonization, delayed healing and drug resistance. In the present review, we summarize the common microorganisms found in acute and chronic wound infections and discuss the challenges from the aspects of clinical diagnosis, non-surgical methods and surgical methods. Moreover, we highlight emerging innovations in the development of antimicrobial peptides, phages, controlled drug delivery, wound dressing materials and herbal medicine, and find that sensitive diagnostics, combined treatment and skin microbiome regulation could be future directions in the treatment of wound infection.

9.
Acta Biomater ; 134: 649-663, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34289420

RESUMEN

Metastasis is one of the major causes of mortality in patients suffering from breast cancer. The signal transducer and activator of transcription 3 (STAT3) is closely related to cancer metastasis. Herein, a multifunctional nanocomplex was developed to simultaneously deliver paclitaxel (PTX) and STAT3 siRNA (siSTAT3) to inhibit tumor growth and prevent metastasis of breast cancer cells. PTX was encapsulated into the synthesized polyethyleneimine-polylactic acid-lipoic acid (PPL) micelle through hydrophobic interaction, while siSTAT3 was condensed onto polyethyleneimine through electrostatic interaction. The surface charge of the drug-loaded nanocomplex (siSTAT3PPLPTX) was then converted to negative by coating with hyaluronic acid (HA). The multifunctional nanocomplex (HA/siSTAT3PPLPTX) effectively entered CD44-overexpressed 4T1 cells via an active targeting mechanism. HA shell was degraded by the concentrated hyaluronidase in the endo/lysosome and the rapid drug release was triggered by the redox micro-environment of cytoplasm. Moreover, HA/siSTAT3PPLPTX showed enhanced cytotoxicity against tumor cells due to a synergistic effect of PTX and siSTAT3. The effective inhibition of tumor metastasis was confirmed by in vitro cell migration and invasion in 4T1 cells. More importantly, a superior antitumor efficacy was observed in orthotopic 4T1 tumor-bearing mice, with no side effects in major organs, and the lung metastasis was strongly inhibited in 4T1 metastasis model. In conclusion, the multifunctional nanocomplex provides a versatile platform for efficient treatment of metastatic cancer through tumor-targeted chemo-gene combined therapy. STATEMENT OF SIGNIFICANCE: Metastasis is one of the major causes of mortality in patients suffering from breast cancer. The signal transducer and activator of transcription 3 (STAT3) is closely related to cancer metastasis. In this study, a multifunctional nanocomplex co-loaded with paclitaxel (PTX) and STAT3 siRNA was constructed and characterized. The co-delivery system exhibited active tumor targeting, effective endo/lysosomal escape, and rapid intracellular drug release. Both in vitro and in vivo studies indicated that the nanocomplex could lead to superior tumor growth inhibition, as well as metastasis suppression by silencing expression of STAT3 and p-STAT3. This present study implies that the nanocomplex could be a potential platform for targeted treatment of metastatic cancer through chemo-gene combined therapy.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Ácido Hialurónico/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , ARN Interferente Pequeño/uso terapéutico , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/uso terapéutico , Microambiente Tumoral
10.
Int J Pharm ; 592: 119936, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33038455

RESUMEN

Ethosomes are widely applied as the carriers for the transdermal delivery of hydrophobic and hydrophilic drugs. Herein, curcumin-loaded ethosomes (CE) with different phospholipid composition were formulated and thoroughly compared. A significant interaction between the unsaturated phosphatidylcholine (PC) and saturated hydrogenated phosphatidylcholine (HPC) was found by molecular simulation and differential scanning calorimetry (DSC), which led to the reduction of PC peroxidation with the presence of HPC. Subsequently, the composite phospholipid ethosomes containing curcumin were prepared for the first time to evaluate their properties in comparison with the conventional ethosomes composed of PC (CE-P) or HPC (CE-H). CE with PC/HPC ratio of 1:1 (CE-P1H1) with the best vesicle stability and flexibility significantly decreased the uptake by HaCaT cells compared to CE-H and free curcumin, indicating reduced skin cell toxicity. Compared with free curcumin, CE-P1H1 had the highest transdermal efficiency (p < 0.001), followed by CE-P (p < 0.05), partly due to the fact that CE-P1H1 could disturb lipid domain of stratum corneum (SC). Moreover, CE-P1H1 was found to promote curcumin for deep penetration of the skin via the hair follicles route. Our study has shown that using composite phospholipid ethosomes as lipid vesicular carriers could enhance transdermal penetration of drugs and increase in the vesicle stability.


Asunto(s)
Curcumina , Absorción Cutánea , Administración Cutánea , Curcumina/metabolismo , Portadores de Fármacos/metabolismo , Liposomas/metabolismo , Permeabilidad , Fosfolípidos/metabolismo , Piel/metabolismo
11.
Int J Pharm ; 589: 119870, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32919005

RESUMEN

The efficient delivery of chemotherapeutic drugs to the tumor tissues unavoidably encounters numerous obstacles, such as poor tumor targeting capability, slow intracellular drug release and massive accumulation in the liver. In this study, by self-assembling methoxy poly (ethylene glycol)-poly (lactide) block copolymer (mPEG-PLA) and hyaluronic acid-paclitaxel conjugate (HA-PTX), the composite nanoparticles (mPPHP NPs) were fabricated for efficient therapy of cancer. mPPHP NPs formed self-assembled nanoparticles (116 nm in diameter) with a narrow size distribution; and showed a rapid release of PTX in the presence of hyaluronidase and esterase. mPPHP NPs exhibited enhanced internalization by cells via CD44 receptors and selected cytotoxicity against A549 cells in vitro. More importantly, compared with other PTX formulations, mPPHP NPs were demonstrated to present the reduced liver accumulation, excellent tumor-targeting ability and superior antitumor efficacy in vivo, with a TIR of 75.9%. The multifunctional composite nanoparticles could be developed as a promising nano-carrier for improved therapeutic efficacy.


Asunto(s)
Nanopartículas , Neoplasias , Línea Celular Tumoral , Portadores de Fármacos/uso terapéutico , Liberación de Fármacos , Humanos , Ácido Hialurónico/uso terapéutico , Neoplasias/tratamiento farmacológico , Paclitaxel/uso terapéutico
12.
ACS Appl Mater Interfaces ; 12(16): 18273-18291, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32223148

RESUMEN

Deep tumor penetration, long blood circulation, rapid drug release, and sufficient stability are the most concerning dilemmas of nano-drug-delivery systems for efficient chemotherapy. Herein, we develop reduction/oxidation-responsive hierarchical nanoparticles co-encapsulating paclitaxel (PTX) and pH-stimulated hyaluronidase (pSH) to surmount the sequential biological barriers for precise cancer therapy. Poly(ethylene glycol) diamine (PEG-dia) is applied to collaboratively cross-link the shell of nanoparticles self-assembled by a hyaluronic acid-stearic acid conjugate linked via a disulfide bond (HA-SS-SA, HSS) to fabricate the hierarchical nanoparticles (PHSS). The PTX and pSH coloaded hierarchical nanoparticles (PTX/pSH-PHSS) enhance the stability in normal physiological conditions and accelerate drug release at tumorous pH, and highly reductive or oxidative environments. Functionalized with PEG and HA, the hierarchical nanoparticles preferentially prolong the circulation time, accumulate at the tumor site, and enter MDA-MB-231 cells via CD44-mediated endocytosis. Within the acidic tumor micro-environment, pSH would be partially reactivated to decompose the dense tumor extracellular matrix for deep tumor penetration. Interestingly, PTX/pSH-PHSS could be degraded apace by the completely activated pSH within endo/lysosomes and the intracellular redox micro-environment to facilitate drug release to produce the highest tumor inhibition (93.71%) in breast cancer models.


Asunto(s)
Antineoplásicos , Portadores de Fármacos , Nanopartículas/química , Oxidación-Reducción , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Femenino , Humanos , Hialuronoglucosaminidasa/química , Hialuronoglucosaminidasa/farmacocinética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacología , Distribución Tisular , Microambiente Tumoral/efectos de los fármacos
13.
Carbohydr Polym ; 229: 115484, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31826482

RESUMEN

A novel chitosan-based multifunctional nanoparticle (PY-CS-PLA) using cationic polylysine (PL) polymer and L-cysteine has been developed and investigated for the oral delivery of paclitaxel (PTX). As amphiphilic polymer, PY-CS-PLA presented good capability in self-assembling into spherical nanoparticle with mean size of 165 nm, and encapsulating PTX into the hydrophobic core. The encapsulated PTX was observed to be sustainedly released from the functionalized chitosan nanoparticle, and with a positive correlation to the pH value of the medium in the range of 1.2 to 7.4. The in vitro studies indicated that PY-CS-PLA/PTX could effectively enhance the cellular uptake of the PTX in Caco-2 cells. Pharmacokinetic result indicated that the oral bioavailability of PY-CS-PLA/PTX in rats was determined to be 5.63-fold to that of Taxol. Moreover, PY-CS-PLA/PTX improved the distribution of PTX in tumor site and presented better antitumor efficacy in Heps tumor-bearing mice and with less toxicity than other formulations. In conclusion, the PY-CS-PLA/PTX nanoparticle might be developed as a promising delivery vehicle for improving the oral bioavailability and therapeutic effect of hydrophobic antitumor drugs.


Asunto(s)
Quitosano/química , Cisteína/química , Portadores de Fármacos/química , Nanopartículas/química , Paclitaxel/administración & dosificación , Paclitaxel/química , Polilisina/química , Administración Oral , Animales , Células CACO-2 , Humanos , Ratones , Paclitaxel/farmacocinética , Paclitaxel/farmacología , Ratas , Ratas Sprague-Dawley , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Carbohydr Polym ; 202: 513-522, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30287030

RESUMEN

Biocompatible, pH-sensitive and charge-conversion micelles derived from hyaluronic acid (HA), poly(lactide) (PLA) and half-generation of sectorial poly(amidoamine) dendrimers (sPA G4.5) were designed and fabricated to target delivery of docetaxel (DTX) to cancer cells. The novel micelles (HA-PALA-DTX) possessed stability against rat plasma and were capable of reversing surface zeta potential under acidic conditions in the presence of HAase. Moreover, the blank micelles demonstrated satisfactory biocompatibility and viability for biomedical applications. A cellular internalization experiment indicated that HA played an important role in increasing intracellular accumulation of DTX delivered by the micelles. Compared to Taxotere® and PALA-DTX, HA-PALA-DTX showed an enhanced anticancer activity in vivo, with a tumor growth inhibition rate of 72.32 ± 5.22%. Overall, the functionalized micelles could be utilized as an alternative carrier for effective targeted delivery of anticancer agents to improve therapeutic efficacy and minimize adverse effects.


Asunto(s)
Antineoplásicos/farmacología , Materiales Biocompatibles/química , Dendrímeros/química , Docetaxel , Sistemas de Liberación de Medicamentos , Ácido Hialurónico/química , Poliaminas/química , Animales , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos , Micelas , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología
15.
Int J Pharm ; 550(1-2): 1-13, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30114451

RESUMEN

Stimuli-responsive nanocarriers have demonstrated their potentials in optimizing chemotherapeutics and anticancer efficacy. In this study, a mixed micelle system (THSP) was prepared by combining reduction-sensitive hyaluronic acid-poly(lactide) (HA-ss-PLA) conjugates and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), with objective to achieve multiple functionalities of selective intracellular rapid release, active targeting capability and multidrug resistance reversal. The mixed micelle possessed desirable particle diameter of 124.32 nm and high entrapment efficiency at 87.97%. Importantly, the THSP mixed micelles demonstrated good stability in systemic circulation and rapidly released PTX in intracellular reductive environment. In vitro cellular uptake study and cytotoxicity assay indicated that the mixed micelles effectively increased drug accumulation in A549 cells and Taxol resistant A549/Taxol cells, and inhibited growth of tumor cells. In addition, the redox-responsive THSP micelles preferentially accumulated to the tumor site and improved anticancer drug activity in vivo, with a TIR of 69.08%. It was concluded that redox-sensitive mixed micelles THSP provided a potential vehicle for efficient anticancer drug delivery and enhancement in treating MDR tumor in the future.


Asunto(s)
Sistemas de Liberación de Medicamentos , Micelas , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Ácido Hialurónico , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Poliésteres , Ratas Sprague-Dawley , Vitamina E
16.
Acta Biomater ; 26: 274-85, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26300335

RESUMEN

Polymer-drug conjugates have demonstrated application potentials in optimizing chemotherapeutics. In this study a new bioconjugate, HA-ss-PTX, was designed and synthesized with cooperative dual characteristics of active tumor targeting and selective intracellular drug release. Paclitaxel (PTX) was covalently attached to hyaluronic acid (HA) with various sizes (MW 9.5, 35, 770 kDa); a cross-linker containing disulfide bond was also used to shield drug leakage in blood circulation and to achieve rapid drug release in tumor cells in response to glutathione. Incorporation of HA to the conjugate enhanced the capabilities of drug loading, intracellular endocytosis and tumor targeting of micelles in comparison to mPEG. HA molecular weight showed significant effect on properties and antitumor efficacy of the synthesized conjugates. Intracellular uptake of HA-ss-PTX toward MCF-7 cells was mediated by CD44-caveolae-mediated endocytosis. Compared to Taxol and mPEG-ss-PTX, HA9.5-ss-PTX demonstrated improved tumor growth inhibition in vivo with a TIR of 83.27 ± 5.20%. It was concluded that HA9.5-ss-PTX achieved rapid intracellular release of PTX and enhanced its therapeutic efficacy, thus providing a platform for specific drug targeting and controlled intracellular release in chemotherapeutics. STATEMENT OF SIGNIFICANCE: Polymer-drug conjugates, promising nanomedicines, still face some technical challenges including a lack of specific targeting and rapid intracellular drug release at the target site. In this manuscript we designed and constructed a novel bioconjugate HA-ss-PTX, which possessed coordinated dual characteristics of active tumor targeting and selective intracellular drug release. Redox-responsive disulfide bond was introduced to the conjugate to shield drug leakage in blood circulation and to achieve rapid drug release at tumor site in response to reductant like glutathione. Paclitaxel was selected as a model drug to be covalently attached to hyaluronic acid (HA) with various sizes to elucidate the structure-activity relationship and to address whether HA could substitute PEG as a carrier for polymeric conjugates. Based on a series of in vitro and in vivo experiments, HA-ss-PTX performed well in drug loading, cellular internalization, tumor targeting by entering tumor cells via CD44-caveolae-mediated endocytosis and rapidly release drug at target in the presence of GSH. One of the key issues in clinical oncology is to enhance drug delivery efficacy while minimizing side effects. The study indicated that this new polymeric conjugate system would be useful in delivering anticancer agents to improve therapeutic efficacy and to minimize adverse effects, thus providing a platform for specific drug targeting and controlled intracellular release in chemotherapeutics.


Asunto(s)
Preparaciones de Acción Retardada/síntesis química , Ácido Hialurónico/química , Nanocápsulas/química , Neoplasias Experimentales/química , Neoplasias Experimentales/tratamiento farmacológico , Paclitaxel/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada/administración & dosificación , Difusión , Humanos , Células MCF-7 , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Nanocápsulas/administración & dosificación , Nanoconjugados/química , Nanoconjugados/ultraestructura , Neoplasias Experimentales/patología , Oxidación-Reducción , Paclitaxel/química , Polímeros/química , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...