Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39065636

RESUMEN

Immunotherapy has been a research hotspot due to its low side effects, long-lasting efficacy, and wide anti-tumor spectrum. Recently, NK cell-based immunotherapy has gained broad attention for its unique immunological character of tumor identification and eradication and low risk of graft-versus-host disease and cytokine storm. With the cooperation of a drug delivery system (DDS), NK cells activate tumoricidal activity by adjusting the balance of the activating and inhibitory signals on their surface after drug-loaded DDS administration. Moreover, NK cells or NK-derived exosomes can also be applied as drug carriers for distinct modification to promote NK activation and exert anti-tumor effects. In this review, we first introduce the source and classification of NK cells and describe the common activating and inhibitory receptors on their surface. Then, we summarize the strategies for activating NK cells in vivo through various DDSs. Finally, the application prospects of NK cells in tumor immunotherapy are also discussed.

2.
Adv Healthc Mater ; : e2401097, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38800937

RESUMEN

The utilization of surface plasmon resonance (SPR) sensors for real-time label-free molecular interaction analysis is already being employed in the fields of in vitro diagnostics and biomedicine. However, the widespread application of SPR technology is hindered by its limited detection throughput and high cost. To address this issue, this study introduces a novel multifunctional MetaSPR high-throughput microplate biosensor featuring 3D nanocups array structure, aiming to achieve high-throughput screening with a reduced cost and enhanced speed. Different types of MetaSPR sensors and analytical detection methods have been developed for accurate antibody subtype identification, epitope binding, affinity determination, antibody collocation, and quantitative detection, greatly promoting the screening and analysis of early-stage antibody drugs. The MetaSPR platform combined with nano-enhanced particles amplifies the detection signal and improves the detection sensitivity, making it more convenient, sensitive, and efficient than traditional ELISA. The findings demonstrate that the MetaSPR biosensor is a new practical technology detection platform that can improve the efficiency of biomolecular interaction studies with unlimited potential for new drug development.

3.
ACS Omega ; 9(14): 15753-15767, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617672

RESUMEN

Tumors are one of the main diseases threatening human life and health. The emergence of nanotechnology in recent years has introduced a novel therapeutic avenue for addressing tumors. Through the amalgamation of nanotechnology's inherent attributes with those of natural enzymes, nanozymes have demonstrated the ability to initiate catalytic reactions, modulate the biological microenvironment, and facilitate the adoption of multifaceted therapeutic approaches, thereby exhibiting considerable promise in the realm of cancer treatment. In this Review, the application of nanozymes in chemodynamic therapy, radiotherapy, photodynamic therapy, photothermal therapy, and starvation therapy are summarized. Moreover, a detailed discussion regarding the mechanism of conferring physiotherapeutic functionality upon catalytic nanosystems is provided. It is posited that this innovative catalytic treatment holds significant potential to play a crucial role within the domain of nanomedicine.

4.
Drug Dev Ind Pharm ; 50(5): 410-419, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38497274

RESUMEN

OBJECTIVES: To develop and evaluate a novel human stratum corneum (SC) mimetic phospholipid vesicle-based permeation assay (PVPASC) model for in vitro permeation studies. SIGNIFICANCE: Due to the increasing restrictions on the use of human and animal skins, artificial skin models have attracted substantial interest in pharmaceuticals and cosmetic industries. In this study, a modified PVPASC model containing both SC lipids and proteins was developed. METHODS: The PVPASC model was optimized by altering the lipid composition and adding keratin in the formulation of large liposomes. The barrier properties were monitored by measuring the electrical resistance (ER) and permeability of Rhodamine B (RB). The modified PVPASC model was characterized in terms of the surface topography, solvent influence and storage stability. The permeation studies of the active components in Compound Nanxing Zhitong Plaster (CNZP) were performed to examine the capability of PVPASC in the application of skin penetration. RESULTS: The ER and Papp values of RB obtained from the optimized PVPASC model indicated a similar barrier property to porcine ear skin. Scanning electron microscope analysis demonstrated a mimic 'brick-and-mortar' structure. The PVPASC model can be stored for three weeks at -20 °C, and withstand the presence of different receptor medium for 24 h. The permeation studies of the active components demonstrated a good correlation (r2 = 0.9136) of Papp values between the drugs' permeation through the PVPASC model and porcine ear skin. CONCLUSION: Keratin contained composite phospholipid vesicle-based permeation assay models have been proven to be potential skin tools in topical/transdermal permeation studies.


Asunto(s)
Permeabilidad , Fosfolípidos , Absorción Cutánea , Humanos , Fosfolípidos/química , Absorción Cutánea/efectos de los fármacos , Absorción Cutánea/fisiología , Porcinos , Permeabilidad/efectos de los fármacos , Animales , Liposomas , Administración Cutánea , Epidermis/metabolismo , Epidermis/efectos de los fármacos , Piel/metabolismo , Piel/efectos de los fármacos , Piel Artificial , Rodaminas/farmacocinética , Rodaminas/química , Rodaminas/administración & dosificación
5.
Biosens Bioelectron ; 248: 115974, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171221

RESUMEN

The accumulation of trace amounts of certain small molecules in food poses considerable human health challenges, including the potential for carcinogenesis and mutagenesis. Here, an ultrasensitive gold-platinum nanoflower-coupled metasurface plasmon resonance (MetaSPR) (APNMSPR) biosensor, based on a competitive immunoassay, was developed for the multiplexed and rapid quantitative analysis of trace small molecules in eggs, offering timely monitoring of food safety. This one-step biosensor can be integrated into either a newly designed detachable high-throughput MetaSPR chip-strip plate device or a standard 96-well plate for multiplexed small-molecule detection within a single egg. The limits of detection were 0.81, 1.12, and 1.74 ppt for florfenicol, fipronil, and enrofloxacin, respectively, demonstrating up to 1000-fold increased sensitivity and a 15-fold reduction in analysis time compared with those of traditional methods. The results obtained using the APNMSPR biosensor showed a strong correlation with those obtained using liquid chromatography-tandem mass spectrometry. The APNMSPR biosensor holds immense promise for the multiplexed, highly sensitive, and rapid quantitative analysis of small molecules for applications in food safety control, early diagnosis, and environmental monitoring.


Asunto(s)
Técnicas Biosensibles , Humanos , Técnicas Biosensibles/métodos , Resonancia por Plasmón de Superficie/métodos , Análisis de Peligros y Puntos de Control Críticos , Oro/química , Huevos , Inmunoensayo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA