Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 11(1): uhad260, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288254

RESUMEN

Grapes are globally recognized as economically significant fruit trees. Among grape varieties, Thompson Seedless holds paramount influence for fresh consumption and for extensive applications in winemaking, drying, and juicing. This variety is one of the most efficient genotypes for grape genetic modification. However, the lack of a high-quality genome has impeded effective breeding efforts. Here, we present the high-quality reference genome of Thompson Seedless with all 19 chromosomes represented as 19 contiguous sequences (N50 = 27.1 Mb) with zero gaps and prediction of all telomeres and centromeres. Compared with the previous assembly (TSv1 version), the new assembly incorporates an additional 31.5 Mb of high-quality sequenced data with annotation of a total of 30 397 protein-coding genes. We also performed a meticulous analysis to identify nucleotide-binding leucine-rich repeat genes (NLRs) in Thompson Seedless and two wild grape varieties renowned for their disease resistance. Our analysis revealed a significant reduction in the number of two types of NLRs, TIR-NB-LRR (TNL) and CC-NB-LRR (CNL), in Thompson Seedless, which may have led to its sensitivity to many fungal diseases, such as powdery mildew, and an increase in the number of a third type, RPW8 (resistance to powdery mildew 8)-NB-LRR (RNL). Subsequently, transcriptome analysis showed significant enrichment of NLRs during powdery mildew infection, emphasizing the pivotal role of these elements in grapevine's defense against powdery mildew. The successful assembly of a high-quality Thompson Seedless reference genome significantly contributes to grape genomics research, providing insight into the importance of seedlessness, disease resistance, and color traits, and these data can be used to facilitate grape molecular breeding efforts.

2.
New Phytol ; 237(5): 1856-1875, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36527243

RESUMEN

Powdery mildew (PM) is a severe fungal disease of cultivated grapevine world-wide. Proanthocyanidins (PAs) play an important role in resistance to fungal pathogens; however, little is known about PA-mediated PM resistance in grapevine. We identified a WRKY transcription factor, VqWRKY56, from Vitis quinquangularis, the expression of which was significantly induced by PM. Overexpression (OE) of VqWRKY56 in Vitis vinifera increased PA content and reduced susceptibility to PM. Furthermore, the transgenic plants showed more cell death and increased accumulation of salicylic acid and reactive oxygen species. Transient silencing of VqWRKY56 in V. quinquangularis and V. vinifera reduced PA accumulation and increased the susceptibility to PM. VqWRKY56 interacted with VqbZIPC22 in vitro and in planta. The protein VqWRKY56 can bind to VvCHS3, VvLAR1, and VvANR promoters, and VqbZIPC22 can bind to VvANR promoter. Co-expression of VqWRKY56 and VqbZIPC22 significantly increased the transcript level of VvCHS3, VvLAR1, and VvANR genes. Finally, transient OE of VqbZIPC22 in V. vinifera promoted PA accumulation and improved resistance to PM, while transient silencing in V. quinquangularis had the opposite effect. Our study provides new insights into the mechanism of PA regulation by VqWRKY56 in grapevine and provides a basis for further metabolic engineering of PA biosynthesis to improve PM resistance.


Asunto(s)
Proantocianidinas , Vitis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/genética , Vitis/metabolismo , Regiones Promotoras Genéticas/genética , Metabolismo Secundario , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología
3.
Mol Plant Pathol ; 23(10): 1415-1432, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35822262

RESUMEN

Botrytis cinerea is a fungus that infects cultivated grape (Vitis vinifera); the identification and characterization of resistance mechanisms in the host is of great importance for the grape industry. Here, we report that a transcription factor in the ethylene-responsive factor (ERF) family (VaERF16) from Chinese wild grape (Vitis amurensis 'Shuang You') is expressed during B. cinerea infection and in response to treatments with the hormones ethylene and methyl jasmonate. Heterologous overexpression of VaERF16 in Arabidopsis thaliana substantially enhanced resistance to B. cinerea and the bacterium Pseudomonas syringae DC3000 via the salicylic acid and jasmonate/ethylene signalling pathways. Yeast two-hybrid, bimolecular fluorescence complementation, and co-immunoprecipitation assays indicated that VaERF16 interacts with the MYB family transcription factor VaMYB306. Overexpression of VaERF16 or VaMYB306 in grape leaves increased resistance to B. cinerea and caused an up-regulation of the defence-related gene PDF1.2, which encodes a defensin-like protein. Conversely, silencing of either gene resulted in increased susceptibility to B. cinerea. Yeast one-hybrid and dual-luciferase assays indicated that VaERF16 increased the transcript levels of VaPDF1.2 by binding directly to the GCC box in its promoter. Notably, VaMYB306 alone did not bind to the VaPDF1.2 promoter, but the VaERF16-VaMYB306 transcriptional complex resulted in higher transcript levels of VaPDF1.2, suggesting that the proteins function through their mutual interaction. Elucidation of this regulatory module may be of value in enhancing resistance of grapevine to B. cinerea infection.


Asunto(s)
Arabidopsis , Vitis , Arabidopsis/metabolismo , Botrytis/genética , Resistencia a la Enfermedad/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vitis/genética , Vitis/microbiología
4.
Hortic Res ; 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35184164

RESUMEN

Anthocyanins are plant secondary metabolites that have a variety of biological functions, including pigmentation. The accumulation of anthocyanins is regulated by both transcriptional activators and repressors. Studies have shown that the bZIP family act primarily as positive regulators of anthocyanin biosynthesis, but there are few reports of negative regulation. Here, we report that a grapevine (Vitis vinifera) bZIP gene from group K, VvbZIP36, acts as a negative regulator of anthocyanin biosynthesis. Knocking-out one allele of VvbZIP36 in grapevine utilizing the CRISPR/Cas9 technology promoted anthocyanin accumulation. Correlation analysis of transcriptome and metabolome data showed that, compared with wild type, a range of anthocyanin biosynthesis genes were activated in VvbZIP36 mutant plants, resulting in the accumulation of related metabolites, including naringenin chalcone, naringenin, dihydroflavonols and cyanidin-3-O-glucoside. Furthermore, the synthesis of stilbenes (α-viniferin), lignans and some flavonols (including quercetin-3-O-rhamnoside, kaempferol-3-O-rhamnoside and kaempferol-7-O-rhamnoside) was significantly inhibited and several genes linked to these metabolism, were down-regulated in the mutant plants. In summary, our results demonstrate that VvbZIP36, as a negative regulator of anthocyanin biosynthesis, plays a role in balancing the synthesis of stilbenes (α-viniferin), lignans, flavonols and anthocyanins.

5.
Hortic Res ; 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35043152

RESUMEN

Powdery mildew (PM), caused by the fungal pathogen Erysiphe necator, is one of the most destructive diseases of grapevine (Vitis vinifera and other Vitis spp). Resistance to PM is an important goal for cultivar improvement, and understanding the underlying molecular mechanisms conditioning resistance is critical. Here, we report that transgenic expression of the WRKY transcription factor gene VqWRKY31 from the PM-resistant species Vitis quinquangularis conferred resistance to powdery mildew in V. vinifera through promoting salicylic acid signaling and specific metabolite synthesis. VqWRKY31 belongs to the WRKY IIb subfamily, and expression of the VqWRKY31 gene was induced in response to E. necator inoculation. Transgenic V. vinifera plants expressing VqWRKY31 were substantially less susceptible to E. necator infection, and this was associated with increased levels of salicylic acid and reactive oxygen species. Correlation analysis of transcriptomic and metabolomic data revealed that VqWRKY31 promoted expression of genes in metabolic pathways and the accumulation of many disease resistance-related metabolites, including stilbenes, flavonoids, and proanthocyanidins. In addition, results indicated that VqWRKY31 can directly bind to the promoters of two structural genes in stilbene synthesis, STS9 and STS48, and activate their expression. Based on our results, we propose a model where VqWRKY31 enhances grapevine PM resistance through activation of salicylic acid defense signaling and promotion of specific disease resistance-related metabolite synthesis. These findings can be directly exploited for molecular breeding strategies to produce PM-resistant grapevine germplasm.

6.
Mol Plant Microbe Interact ; 35(1): 15-27, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34533970

RESUMEN

Grape anthracnose caused by Elsinoë ampelina (Shear) is one of the most serious fungal diseases that lead to the quality reduction and yield losses of grape (Vitis vinifera 'Red Globe') berries. In the present study, metabolome and transcriptome analyses were conducted using grape berries in the field after infection with E. ampelina at 7, 10, and 13 days to identify the metabolic properties of berries. In total, 132 metabolites with significant differences and 6,877 differentially expressed genes were detected and shared by three comparisons. The analyses demonstrated that phenylpropanoid, flavonoid, stilbenoid, and nucleotide metabolisms were enriched in E. ampelina-infected grape berries but not amino acid metabolism. Phenolamide, terpene, and polyphenole contents also accumulated during E. ampelina infection. The results provided evidence of the enhancement of secondary metabolites such as resveratrol, α-viniferin, ε-viniferin, and lignins involved in plant defense. The results showed the plant defense-associated metabolic reprogramming caused by E. ampelina infection in grape berry and provided a global metabolic mechanism under E. ampelina stimulation.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Ascomicetos , Vitis , Ascomicetos/genética , Frutas , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas
7.
Hortic Res ; 8(1): 114, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33931634

RESUMEN

The CRISPR (clustered regularly interspaced short palindromic repeats)-associated protein 9 (Cas9) system is a powerful tool for targeted genome editing, with applications that include plant biotechnology and functional genomics research. However, the specificity of Cas9 targeting is poorly investigated in many plant species, including fruit trees. To assess the off-target mutation rate in grapevine (Vitis vinifera), we performed whole-genome sequencing (WGS) of seven Cas9-edited grapevine plants in which one of two genes was targeted by CRISPR/Cas9 and three wild-type (WT) plants. In total, we identified between 202,008 and 272,397 single nucleotide polymorphisms (SNPs) and between 26,391 and 55,414 insertions/deletions (indels) in the seven Cas9-edited grapevine plants compared with the three WT plants. Subsequently, 3272 potential off-target sites were selected for further analysis. Only one off-target indel mutation was identified from the WGS data and validated by Sanger sequencing. In addition, we found 243 newly generated off-target sites caused by genetic variants between the Thompson Seedless cultivar and the grape reference genome (PN40024) but no true off-target mutations. In conclusion, we observed high specificity of CRISPR/Cas9 for genome editing of grapevine.

8.
Phytopathology ; 111(5): 799-807, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33079021

RESUMEN

Elsinoë ampelina is the main cause of grape anthracnose, and the majority of grapevine cultivars are susceptible to this fungus. Some Chinese wild grape cultivars are resistant, however. It is therefore apt to compare the pathogenesis and immune responses in susceptible and resistant cultivars of grapevine to explore the detailed molecular and biochemical mechanisms of resistance to this fungus. In this study, ultrastructural and histopathological observations were used to demonstrate the resistance responses to E. ampelina in the resistant Chinese wild cultivar Vitis quinquangularis clone 'Shang-24' and the susceptible cultivars V. davidii 'Tangwei' and V. vinifera 'Thompson Seedless'. Seventy-two hours postinoculation (hpi) with E. ampelina, brown necrotic spots were clearly visible on the leaves of the susceptible 'Tangwei' and 'Thompson Seedless'. The infection was characterized by rapid colonization of the host cells by hyphae and massive spread of the pathogen in the intercellular spaces, ultimately leading to host cell collapse, cuticle dissolution, and extensive hyphal growth. In the resistant clone 'Shang-24', the conidia were lysed, a large quantity of electronically dense matter appeared, the hyphal growth was suppressed, and the host cells remained intact. In addition, six genes associated with disease resistance were differentially expressed in the susceptible and resistant cultivars. These disease-related genes were significantly up-regulated following infection with E. ampelina. This study illustrates the differences in infection and colonization of E. ampelina in resistant and susceptible grape leaves.


Asunto(s)
Ascomicetos , Vitis , Inmunidad , Enfermedades de las Plantas
9.
Hortic Res ; 7: 150, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922822

RESUMEN

Drought stress severely affects grapevine quality and yield, and recent reports have revealed that lignin plays an important role in protection from drought stress. Since little is known about lignin-mediated drought resistance in grapevine, we investigated its significance. Herein, we show that VlbZIP30 mediates drought resistance by activating the expression of lignin biosynthetic genes and increasing lignin deposition. Transgenic grapevine plants overexpressing VlbZIP30 exhibited lignin deposition (mainly G and S monomers) in the stem secondary xylem under control conditions, which resulted from the upregulated expression of VvPRX4 and VvPRX72. Overexpression of VlbZIP30 improves drought tolerance, characterized by a reduction in the water loss rate, maintenance of an effective photosynthesis rate, and increased lignin content (mainly G monomer) in leaves under drought conditions. Electrophoretic mobility shift assay, luciferase reporter assays, and chromatin immunoprecipitation-qPCR assays indicated that VlbZIP30 directly binds to the G-box cis-element in the promoters of lignin biosynthetic (VvPRX N1) and drought-responsive (VvNAC17) genes to regulate their expression. In summary, we report a novel VlbZIP30-mediated mechanism linking lignification and drought tolerance in grapevine. The results of this study may be of value for the development of molecular breeding strategies to produce drought-resistant fruit crops.

10.
Int J Mol Sci ; 19(3)2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29494485

RESUMEN

Ethylene response factor (ERF) transcription factors play important roles in regulating immune responses in plants. In our study, we characterized a member of the ERF transcription factor family, VaERF20, from the Chinese wild Vitis genotype, V. amurensis Rupr "Shuangyou". Phylogenetic analysis indicated that VaERF20 belongs to group IXc of the ERF family, in which many members are known to contribute to fighting pathogen infection. Consistent with this, expression of VaERF20 was induced by treatment with the necrotrophic fungal pathogen Botrytis cinerea (B. cinerea) in "Shuangyou" and V. vinifera "Red Globe". Arabidopsis thaliana plants over-expressing VaERF20 displayed enhanced resistance to B. cinerea and the bacterium Pseudomonas syringae pv. tomato (Pst) DC3000. Patterns of pathogen-induced reactive oxygen species (ROS) accumulation were entirely distinct in B. cinerea and PstDC3000 inoculated plants. Examples of both salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) responsive defense genes were up-regulated after B. cinerea and PstDC3000 inoculation of the VaERF20-overexpressing transgenic A. thaliana plants. Evidence of pattern-triggered immunity (PTI), callose accumulation and stomatal defense, together with increased expression of PTI genes, was also greater in the transgenic lines. These data indicate that VaERF20 participates in various signal transduction pathways and acts as an inducer of immune responses.


Asunto(s)
Arabidopsis/genética , Arabidopsis/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Factores de Transcripción/genética , Vitis/genética , Arabidopsis/inmunología , Botrytis , Resistencia a la Enfermedad/inmunología , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Filogenia , Plantas Modificadas Genéticamente , Pseudomonas syringae , Análisis de Secuencia de ADN
11.
Shanghai Kou Qiang Yi Xue ; 19(1): 41-4, 2010 Feb.
Artículo en Chino | MEDLINE | ID: mdl-20300692

RESUMEN

PURPOSE: The widths of anterior teeth are measured and compared to see if there was any specific ratio between the anterior teeth, and to provide some referential data for clinical application in esthetic dentistry. METHODS: Gypsum casts of the maxillary and mandibular arches were made by traditional ways. With the help of dividers and vernier calipers, the widths of anterior teeth were measured. The mean values were gained by doing the measurement several times. SAS6.12 software package was used for grouped t test, paired t test and REG regression. RESULTS: Statistically significant difference(P<0.01) was observed, when comparing the widths of anterior teeth with their ideal golden section(0.618 or 1.618). There were statistically significant differences in the correlation coefficient of anterior teeth(P=0.0001). CONCLUSIONS: The golden section is not found in the anterior teeth. There is some proportional relationships between the upper and lower anterior teeth.


Asunto(s)
Diente Canino , Odontometría , Estética Dental , Humanos , Incisivo , Maxilar , Corona del Diente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...