Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Animals (Basel) ; 14(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38998098

RESUMEN

This study aimed to evaluate the effects of arginine (0.5%, 1%, 1.5%, 2%, and 2.5% arginine supplementation levels were selected) on the ovarian development of Pacific white shrimp (Litopenaeus vannamei). The analyzed arginine supplementation levels in each diet were 2.90%, 3.58%, 4.08%, 4.53%, 5.04%, and 5.55%, respectively. A total of 540 shrimp (an initial weight of approximately 14 g) with good vitality were randomly distributed into six treatments, each of which had three tanks (300 L in volume filled with 200 L of water), with 30 shrimp per duplicate. Shrimp were fed three times a day (6:00 a.m., 11:00 a.m., and 6:00 p.m.). The results showed that after the 12-week raring cycle, shrimp fed with 4.08% and 4.53% Arg achieved better ovary development, which was identified by ovarian stage statistics, ovarian morphology observation, serum hormone levels (methylfarneside (MF); 5-hydroxytryptamine (5-HT); estradiol (E2); and gonadotropin-releasing hormone (GnRH)), gene expression (DNA meiotic recombinase 1 (dmc1), proliferating cell nuclear antigen (pcna), drosophila steroid hormone 1 (cyp18a), retinoid X receptor (rxra), and ecdysone receptor (ecr)). Further in-depth analysis showed that 4.08% and 4.53% Arg supplementation increased the concentration of vitellogenin in hepatopancreas and serum (p < 0.05) and upregulated the expression level of hepatopancreatic vg and vgr (p < 0.05), which promoted the synthesis of hepatopancreas exogenous vitellogenin and then transported it into the ovary through the vitellogenin receptor and further promoted ovarian maturation in L. vannamei. Meanwhile, compared with the control group, the expression level of vg in the ovary of the 4.53% Arg group was significantly upregulated (p < 0.05), which indicated endogenous vitellogenin synthesis in ovarian maturation in L. vannamei. Moreover, the expression of genes related to the mechanistic target of the rapamycin complex 1 (mTORC1) pathway and protein levels was regulated by dietary arginine supplementation levels. Arginine metabolism-related products, including nitric oxide synthase (NOS), nitric oxide (NO), and cyclic guanosine monophosphate (cGMP), were also affected. RNA interference was applied here to study the molecular regulation mechanism of arginine on ovarian development in L. vannamei. A green fluorescent protein (GFP)-derived double-stranded RNA (dsGFP) is currently commonly used as a control, while TOR-derived dsRNA (dsTOR) and NOS-derived dsRNA (dsNOS) were designed to build the TOR and NOS in vivo knockdown model. The results showed that the mTORC1 and NO-sGC-cGMP pathways were inhibited, while the vitellogenin receptor and vitellogenin gene expression levels were downregulated significantly in the hepatopancreas and ovary. Overall, dietary arginine supplementation could enhance endogenous and exogenous vitellogenin synthesis to promote ovary development in L. vannamei, and the appropriate dosages were 4.08% and 4.53%. The NO-sGC-cGMP and mTORC1 signaling pathways mediated arginine in the regulation of ovary development in L. vannamei.

2.
Bioresour Technol ; 404: 130917, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824969

RESUMEN

Electro-fermentation (EF) was combined with anaerobic fermentation (AF) to promote medium-chain fatty acid (MCFA) from sewage sludge. Results showed that EF at acidification process significantly increased short-chain fatty acid (SCFA) production of by 0.5 times (82.4 mmol C/L). AF facilitated the chain elongation (CE) process by enhancing the SCFA conversion. Combined EF at acidification and AF at CE (EF-AF) achieved the highest MCFA production of 27.9 mmol C/L, which was 20 %-866 % higher than the other groups. Electrochemical analyses showed that enhanced SCFA and MCFA production was accompanied with good electrochemical performance at acidification and CE. Microbial analyses showed that EF-AF promoted MCFA production by enriching electrochemically active bacteria (EAB, Bacillus sp.). Enzyme analyses indicated that EF-AF promoted MCFA production by enriching the functional enzymes involved in Acetyl-CoA formation and the fatty acid biosynthesis (FAB) pathway. This study provided new insights into the production of MCFA from enhanced sewage sludge.


Asunto(s)
Ácidos Grasos , Fermentación , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Anaerobiosis , Ácidos Grasos/metabolismo , Ácidos Grasos Volátiles/metabolismo
3.
Insects ; 15(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38921167

RESUMEN

iGABAR, a member of the Cys-loop ligand-gated ion channel superfamily, is a significant target of the insecticide ivermectin (IVM). GRD is the potential subunit of the insect iGABAR. However, little information about GRD in Ae. aegypti has been reported. In this study, we involved cloning and characterizing the iGABAR subunit GRD of Ae. aegypti (Ae-GRD). Sequence analysis indicated that Ae-GRD, as part of the cysteine-loop ligand-gated ion channel family, is similar to other insect GRD. RNA interference (RNAi) was employed to explore IVM resistance in Ae. aegypti, resulting in a significant reduction in Ae-GRD expression (p < 0.05), and the mortality of Ae. aegypti adults with Ae-GRD knockdown was significantly decreased after exposure to ivermectin. Bioinformatics prediction identified miR-71-5p as a potential regulator of Ae-GRD. In vitro, dual-luciferase reporter assays confirmed that Ae-GRD expression was regulated by miR-71-5p. Microinjection of miR-71-5p mimics upregulated miR-71-5p expression and downregulated Ae-GRD gene expression, reducing mortality by 34.52% following IVM treatment. Conversely, microinjection of a miR-71-5p inhibitor decreased miR-71-5p expression but did not affect the susceptibility to IVM despite increased Ae-GRD expression (p < 0.05). In conclusion, Ae-GRD, as one of the iGABA receptor subunits, is a potential target of ivermectin. It may influence ivermectin resistance by modulating the GABA signaling pathway. The inhibition of Ae-GRD expression by miR-71-5p decreased ivermectin resistance and consequently lowered the mortality rate of Ae. aegypti mosquitoes. This finding provides empirical evidence of the relationship between Ae-GRD and its miRNA in modulating insecticide resistance, offering novel perspectives for mosquito control strategies.

4.
Sci Total Environ ; 926: 171796, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38513848

RESUMEN

Bioaerosol emissions and their associated risks are attracting increasing attention. Bioaerosols are generated during the pretreatment, fermentation, and screening of mature compost when processing various types of solid waste at composting plants (e.g., municipal sludge and animal manure). In this review, we summarize research into bioaerosols at different types of composting plants by focusing on the methods used for sampling bioaerosols, stages when emissions potentially occur, major components of bioaerosols, survival and diffusion factors, and possible control strategies. The six-stage Andersen impactor is the main method used for sampling bioaerosols in composting plants. In addition, different composting management methods mainly affect bioaerosol emissions from composting plants. Studies of the components of bioaerosols produced by composting plants mainly focused on bacteria and fungi, whereas few considered others such as endotoxin. The survival and diffusion of bioaerosols are influenced by seasonal effects due to changes in environmental factors, such as temperature and relative humidity. Finally, three potential strategies have been proposed for controlling bioaerosols in composting plants. Improved policies are required for regulating bioaerosol emissions, as well as bioaerosol concentration diffusion models and measures to protect human health.


Asunto(s)
Compostaje , Animales , Humanos , Microbiología del Aire , Bacterias , Endotoxinas , Temperatura , Aerosoles
5.
Chemosphere ; 354: 141660, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462181

RESUMEN

Production of medium-chain fatty acids (MCFAs) from sewage sludge has dual effects on valuable sludge disposal and renewable energy generation, while low efficiency limits its application. Biochar addition is considered an effective method to improve MCFAs production. In this study, the influence of biochar adding strategies (i.e., adding biochar in acidification or chain elongation (CE) processes) on MCFAs production was explored. Results showed that by adding biochar in the acidification process, MCFAs accumulation increased by over 114%, accompanied by the highest carbon conversion efficiency (134.66%) and electron transfer efficiency of MCFAs (94.22%) by the terminal CE. Adding biochar before the acidification process better enriched CE bacteria (e.g., Paraclostridium) and strengthened the dominant metabolic pathway. In contrast, the biochar added before the CE process priorly enriched the bacteria capable of degrading organics, like unclassified_f__Dysgonomonadaceae, norank_f__norank_o__OPB41, and Acetobacterium. The differences in excessive ethanol oxidation and short-chain fatty acids accumulation induced by varied adding strategies might be responsible for this.


Asunto(s)
Carbón Orgánico , Ácidos Grasos , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Anaerobiosis , Ácidos Grasos Volátiles , Fermentación
6.
J Environ Manage ; 355: 120463, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38430882

RESUMEN

Biochar could promote humification in composting, nevertheless, its mechanism has not been fully explored from the perspective of the overall bacterial community and its metabolism. This study investigated the effects of bamboo charcoal (BC) and wheat straw biochar (WSB) on the humic acid (HA) and fulvic acid (FA) contents during pig manure composting. The results showed that BC enhanced humification more than WSB, and significantly increased the HA content and HA/FA ratio. The bacterial community structure under BC differed from those under the other treatments, and BC increased the abundance of bacteria associated with the transformation of organic matter compared with the other treatments. Furthermore, biochar enhanced the metabolism of carbohydrates and amino acids in the thermophilic and cooling phases, especially BC. Through Mantel tests and network analysis, we found that HA was mainly related to carbon source metabolism and the bacterial community, and BC might change the interaction patterns among carbohydrates, amino acid metabolism, Bacillales, Clostridiales, and Lactobacillales with HA and FA to improve the humification process during composting. These results are important for understanding the mechanisms associated with the effects of biochar on humification during composting.


Asunto(s)
Carbón Orgánico , Compostaje , Animales , Porcinos , Carbón Orgánico/química , Estiércol/microbiología , Suelo/química , Sustancias Húmicas , Carbohidratos , Bacterias
7.
J Affect Disord ; 352: 342-348, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364978

RESUMEN

BACKGROUND: The incidence of adolescent depression has markedly risen in recent years, with a high recurrence rate into adulthood. Diagnosis in adolescents is challenging due to subjective factors, highlighting the crucial need for objective diagnostic markers. METHODS: Our study enrolled 204 participants, including healthy controls (n = 88) and first-episode adolescent depression patients (n = 116). Serum samples underwent gas chromatography-mass spectrometry (GC-MS) analysis to assess non-esterified fatty acids (NEFA) expression. Machine learning and ROC analysis were employed to identify potential biomarkers, followed by bioinformatics analysis to explore underlying mechanisms. RESULTS: Nearly all differentially expressed NEFA exhibited significant downregulation. Notably, nonanoic acid, cis-10-pentadecenoic acid, cis-10-carboenoic acid, and cis-11-eicosenoic acid demonstrated excellent performance in distinguishing adolescent depression patients. Metabolite-gene interaction analysis revealed these NEFAs interacted with multiple genes. KEGG pathway analysis on these genes suggested that differentially expressed NEFA may impact PPAR and cAMP signaling pathways. LIMITATIONS: Inclusion of diverse populations for evaluation is warranted. Biomarkers identified in this study require samples that are more in line with the experimental design for external validation, and further basic research is necessary to validate the potential depressive mechanisms of NEFA. CONCLUSIONS: The overall reduction in NEFA expression in first-episode adolescent depression patients suggests a potential mediation of depression symptoms through cAMP and PPAR signaling pathways. NEFA levels show promise as a diagnostic tool for identifying first-episode adolescent depression patients.


Asunto(s)
Depresión , Ácidos Grasos no Esterificados , Humanos , Adolescente , Ácidos Grasos no Esterificados/metabolismo , Depresión/diagnóstico , Receptores Activados del Proliferador del Peroxisoma , Biomarcadores , Cromatografía de Gases y Espectrometría de Masas
8.
Bioresour Technol ; 394: 130214, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38122996

RESUMEN

Biochar has demonstrated the potential in mitigating N2O emissions during composting. However, little is known about how microbial communities on biochar particles interact with N2O emissions. This study selected three types of biochar (corn stalk biochar (CSB), rape straw biochar (RSB), and bamboo charcoal (BC)) to investigate the relationship between N2O emissions and denitrifying bacterial communities on compost and biochar particles. The results showed that N2O emissions rate were higher in the thermophilic phase, and the average emissions rate of BC treatment were lower 40% and 26% than CSB and RSB, respectively. The nosZ-carrying denitrifying bacterial community played a key role in reducing N2O emissions, and the network indicated that Rhizobium and Paracoccus on compost particles may have played major roles in reducing N2O emissions, but only Paracoccus on biochar particles. Notably, BC enhanced the efficiency of N2O emission reduction by enhancing the abundance of these key genera.


Asunto(s)
Compostaje , Desnitrificación , Carbón Orgánico , Óxido Nitroso/análisis , Suelo , Bacterias , Microbiología del Suelo
9.
Mol Ther Nucleic Acids ; 34: 102067, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38028193

RESUMEN

Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury, which is a serious clinical condition with no effective pharmacological treatment. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) significantly alleviate kidney IRI; however, the underlying mechanisms and key molecules conferring renoprotection remain elusive. In this study, we characterized the protein composition of MSC-EVs using a proteomics approach and found that mitochondrial protein superoxide dismutase 2 (SOD2) was enriched in MSC-EVs. Using lipid nanoparticles (LNP), we successfully delivered chemically modified SOD2 mRNA into kidney cells and mice with kidney IRI. We demonstrated that SOD2 mRNA-LNP treatment decreased cellular reactive oxygen species (ROS) in cultured cells and ameliorated renal damage in IRI mice, as indicated by reduced levels of serum creatinine and restored tissue integrity compared with the control mRNA-LNP-injected group. Thus, the modulation of mitochondrial ROS levels through SOD2 upregulation by SOD2 mRNA-LNP delivery could be a novel therapeutic method for ischemia-reperfusion-induced acute kidney injury.

10.
EMBO Mol Med ; 15(12): e17745, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37840432

RESUMEN

Prenatal diagnosis of congenital heart disease (CHD) relies primarily on fetal echocardiography conducted at mid-gestational age-the sensitivity of which varies among centers and practitioners. An objective method for early diagnosis is needed. Here, we conducted a case-control study recruiting 103 pregnant women with healthy offspring and 104 cases with CHD offspring, including VSD (42/104), ASD (20/104), and other CHD phenotypes. Plasma was collected during the first trimester and proteomic analysis was performed. Principal component analysis revealed considerable differences between the controls and the CHDs. Among the significantly altered proteins, 25 upregulated proteins in CHDs were enriched in amino acid metabolism, extracellular matrix receptor, and actin skeleton regulation, whereas 49 downregulated proteins were enriched in carbohydrate metabolism, cardiac muscle contraction, and cardiomyopathy. The machine learning model reached an area under the curve of 0.964 and was highly accurate in recognizing CHDs. This study provides a highly valuable proteomics resource to better recognize the cause of CHD and has developed a reliable objective method for the early recognition of CHD, facilitating early intervention and better prognosis.


Asunto(s)
Cardiopatías Congénitas , Proteoma , Embarazo , Humanos , Femenino , Estudios de Casos y Controles , Proteómica , Cardiopatías Congénitas/diagnóstico , Biomarcadores , Cisplatino , Ciclofosfamida
11.
Bioresour Technol ; 387: 129691, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37625654

RESUMEN

High resistance of erythromycin has been the key factor restricting the disposal of erythromycin fermentation residues (EFR). Considering the high sensitivity of erythromycin to acidic conditions, anaerobic fermentation may be a good approach for EFR treatment, through which pH decreases along with the volatile fatty acids (VFA) accumulation. This study firstly explored the EFR treatment by combined thermal pretreatment and anaerobic fermentation. Results showed that thermal pretreatment and anaerobic fermentation exhibited a synergistic effect on erythromycin removal. Erythromycin concentration decreased to 20.0 mg/L with the maximum removal rate of 60.0%, which was 140% and 71.4% higher than erythromycin removal by sole thermal pretreatment and anaerobic fermentation. Thermal pretreatment induced the increased VFA production by 22.3% with the highest VFA concentration of 5325.4 mg/L. Microbial analysis shows that thermal pretreatment stimulated erythromycin degradation and VFA production by increasing the microbial diversity and enriching the functional enzymes involved in acetate-producing pathways.


Asunto(s)
Ácidos Grasos Volátiles , Microbiota , Fermentación , Anaerobiosis , Eritromicina , Redes y Vías Metabólicas , Antibacterianos/farmacología
12.
Pathol Res Pract ; 248: 154630, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37393665

RESUMEN

Ovarian, cervical, and endometrial cancers are the three most common gynecological cancer types (GCs). They hold a significant position as the leading causes of mortality among women with cancer-related death. However, GCs are often diagnosed late, severely limiting the efficacy of current treatment options. Thus, there is an urgent, unmet need for innovative experimentation to enhance the clinical treatment of GC patients. MicroRNAs (miRNAs) are a large and varied class of short noncoding RNAs (22 nucleotides in length) that have been shown to play essential roles in various biological processes involved in development. Recent research has shown that miR-211 influences tumorigenesis and cancer formation, adding to our knowledge of the miR-21 dysregulation in GCs. Furthermore, current research that sheds light on the crucial functions of miR-21 may provide supporting evidence for its potential prognostic, diagnostic, and therapeutic applications in the context of GCs. This review will thus focus on the most recent findings concerning miR-21 expression, miR-21 target genes, and the processes behind GCs. In addition, the latest findings that support miR-21's potential use as a non-invasive biomarker and therapeutic agent for detecting and treating cancer will be elucidated in this review. The roles played by various lncRNA/circRNA-miRNA-mRNA axis in GCs are also comprehensively summarized and described in this study, along with any possible implications for how these regulatory networks may contribute to the pathogenesis of GCs. Also, it is crucial to recognize the complexity of the processes involved in tumour therapeutic resistance as a significant obstacle in treating GCs. Furthermore, this review provides an overview of the current state of knowledge regarding the functional significance miR-21 in therapeutic resistance within the context of GCs.


Asunto(s)
Neoplasias Endometriales , MicroARNs , Humanos , Femenino , Relevancia Clínica , MicroARNs/metabolismo , Neoplasias Endometriales/genética , Pronóstico
13.
Int J Biol Macromol ; 243: 125220, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37285894

RESUMEN

The design and preparation of novel renewable biomass-based dielectric composites have drawn great attention recently. Here, cellulose was dissolved in NaOH/urea aqueous solution, and Al2O3 nanosheets (AONS) synthesized by hydrothermal method were used as fillers. Then the regenerated cellulose (RC)-AONS dielectric composite films were prepared by regeneration, washing and drying. The two-dimensional AONS had a better effect on improving the dielectric constant and breakdown strength of the composites, so that the RC-AONS composite film with 5 wt% AONS content reached an energy density of 6.2 J/cm3 at 420 MV/m. Furthermore, in order to improve the dielectric energy storage properties of cellulose films in high humidity environment, the hydrophobic polyvinylidene fluoride (PVDF) was innovatively introduced to construct RC-AONS-PVDF composite films. The energy storage density of the prepared ternary composite films could reach 8.32 J/cm3 at 400 MV/m, which was 416 % improvement against that of the commercially biaxially oriented polypropylene (2 J/cm3), and could be cycled for >10,000 times under 200 MV/m. Concurrently, the water absorption of the composite film in humidity was effectively reduced. This work broadens the application prospect of biomass-based materials in the field of film dielectric capacitor.


Asunto(s)
Celulosa , Polivinilos , Biomasa , Desecación
14.
Pharmaceutics ; 15(5)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37242654

RESUMEN

Neutralizing antibodies (nAbs), the popular antiviral drugs used for the treatment of COVID-19, are effective in reducing viral load and hospitalization. Currently, most nAbs are screened from convalescent or vaccinated individuals through single B-cell sequencing which requires cutting-edge facilities. Moreover, owing to the rapid mutation of SARS-CoV-2, some approved nAbs are no longer effective. In the present study, we designed a new approach to acquiring broadly neutralizing antibodies (bnAbs) from mRNA-vaccinated mice. Using the flexibility and speed of mRNA vaccine preparation, we designed a chimeric mRNA vaccine and sequential immunization strategies to acquire bnAbs in mice within a short period. By comparing different vaccination orders, we found that the initially administered vaccine had a greater effect on the neutralizing potency of mouse sera. Ultimately, we screened a strain of bnAb that neutralized wild-type, Beta, and Delta SARS-CoV-2 pseudoviruses. We synthesized the mRNAs of the heavy and light chains of this antibody and verified its neutralizing potency. This study developed a new strategy to screen for bnAbs in mRNA-vaccinated mice and identified a more effective immunization strategy for inducing bnAbs, providing valuable insights for future antibody drug development.

15.
Bioresour Technol ; 382: 129180, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37210032

RESUMEN

The propagation of antibiotic resistance genes (ARGs) restricts the application of antibiotic fermentation residues (AFRs). This study investigated medium chain fatty acids (MCFA) production from AFRs, focusing on the effect of ionizing radiation pretreatment on the fates of ARGs. The results indicated that ionizing radiation pretreatment not only stimulated the MCFA production, but also inhibited the proliferation of ARGs. Radiation at 10-50 kGy decreased ARGs abundances by 0.6-21.1% at the end of fermentation process. Mobile genetic elements (MGEs) exhibited higher resistance to ionizing radiation, radiation over 30 kGy was required to suppress the proliferation of MGEs. Radiation at 50 kGy achieved an adequate inhibition to MGEs, and the degradation efficiency was 17.8-74.5% for different kinds of MGEs. This work suggested that ionizing radiation pretreatment could be a good option to ensure the safer application of AFRs by eliminating the ARGs and preventing the horizontal gene transfer of ARGs.


Asunto(s)
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Fermentación , Genes Bacterianos/genética , Farmacorresistencia Microbiana/genética , Radiación Ionizante
16.
J Pediatr Nurs ; 71: 73-78, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37028228

RESUMEN

BACKGROUND: Vaccination uptake rates for adolescents are still low in China despite safe and effective human papillomavirus vaccines being available. The awareness and attitudes of parents to HPV vaccines play a decisive role in adolescents' HPV vaccination uptake. METHODS: A cross-sectional study was conducted from March, 2022 to May, 2022 using an anonymous questionnaire among parents of 9 to 18 years of age from 73 cities in 23 provinces in mainland China. Demographic characteristics of parents, their knowledge and attitudes about HPV and HPV vaccination, as well as factors influencing HPV vaccination in adolescents were assessed. RESULTS: More than two-thirds of parents heard of HPV (75.5%) and HPV vaccines (84.7%). Of these participants, mothers (83.8%) were in the majority. Parents willing to vaccinate themselves and their children against HPV were 84.9% and 87.6%, respectively. Parents were more likely to vaccinate their daughters against HPV than their sons (P < 0.001). Parents who had heard of the HPV vaccines (P = 0.028) or had vaccinated themselves (P < 0.001) were more likely to have HPV vaccination for their children. Parents who accepted the price of the HPV vaccines (P = 0.005) were more likely to have their children vaccinated against HPV. CONCLUSIONS: Children's gender, awareness of the HPV vaccines, parental HPV vaccination, and the price of the HPV vaccines are likely to be the reason for parents' vaccine hesitancy for adolescents. PRACTICE IMPLICATIONS: Nurses have a critical role in identifying parental hesitancy and providing individualized education to expand the parental awareness and knowledge and encourage on-time adolescents vaccination.


Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Niño , Femenino , Humanos , Adolescente , Estudios Transversales , Infecciones por Papillomavirus/prevención & control , Conocimientos, Actitudes y Práctica en Salud , Padres/educación , Vacunación , China , Encuestas y Cuestionarios , Aceptación de la Atención de Salud
17.
Bioresour Technol ; 379: 129056, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37059340

RESUMEN

The potential of antibiotic resistance genes (ARGs) amplification restricts the biological recovery of antibiotic fermentation residues (AFRs) through two-stage anaerobic fermentation. This study explored the fate of ARGs during the fermentation of AFRs that comprising of acidification and chain elongation (CE). Results showed that with the alteration of fermentation process from acidification to CE, microbial richness was significantly increased, total abundance of ARGs was slightly decreased by 1.84%, and the significant negative correlations between ARGs and microbes were increased, implied the inhibitory effect of CE microbes to ARGs amplification. However, the total abundance of mobile genetic elements (MGEs) was increased by 24.5%, indicating that the potential of gene horizontal transfer of ARGs increased. This work suggested that two-stage anaerobic fermentation could effectively restrict the ARGs amplification, but more concerns are needed for the long-term dissemination of ARGs.


Asunto(s)
Antibacterianos , Farmacorresistencia Microbiana , Ácidos Grasos , Genes Bacterianos , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Fermentación , Genes Bacterianos/genética
18.
J Environ Manage ; 333: 117464, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764176

RESUMEN

Fungal degradation of cellulose is a key step in the conversion of organic matter in composting. This study investigated the effects of adding 10% biochar (including, prepared from corn stalk and rape stalk corresponding to CSB and RSB) on organic matter transformation in composting and determined the role of cellulase and fungal communities in the conversion of organic matter. The results showed that biochar could enhance the conversion of organic matter, especially in RSB treatment. Biochar could increase cellulase activity, and RSB could enhance 33.78% and 30.70% the average activity of cellulase compared with the control and CSB treatments in the mesophilic to thermophilic phase, respectively. The results of high throughput sequencing demonstrated that Basidiomycota dominant in mesophilic phase, and Ascomycota dominant in other phases of composting. The redundancy analysis showed that Alternaria, Thermomycees, Aspergillus, Wallemia, and Melanocarpus might be the key fungi for the degradation of organic matter, and Fusarium, Penicillium, and Scopulariopsis may promote the conversion of organic matter. Network showed that the addition of RSB changed the interactions between fungal communities and organic matter transformation, and RSB treatment enriched members of Ascomycota related to organic matter transformation and cellulase activity. These results indicated that RSB improved organic matter conversion by enhancing the role of cellulase and fungal communities.


Asunto(s)
Celulasas , Compostaje , Micobioma , Animales , Porcinos , Suelo , Estiércol/microbiología , Carbón Orgánico
20.
Hepatology ; 77(2): 411-429, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35716043

RESUMEN

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a highly heterogeneous cancer with limited understanding and few effective therapeutic approaches. We aimed at providing a proteogenomic CCA characterization to inform biological processes and treatment vulnerabilities. APPROACH AND RESULTS: Integrative genomic analysis with functional validation uncovered biological perturbations downstream of driver events including DPCR1 , RBM47 mutations, SH3BGRL2 copy number alterations, and FGFR2 fusions in CCA. Proteomic clustering identified three subtypes with distinct clinical outcomes, molecular features, and potential therapeutics. Phosphoproteomics characterized targetable kinases in CCA, suggesting strategies for effective treatment with CDK and MAPK inhibitors. Patients with CCA with HBV infection showed increased antigen processing and presentation (APC) and T cell infiltration, conferring a favorable prognosis compared with those without HBV infection. The characterization of extrahepatic CCA recommended the feasible application of vascular endothelial-derived growth factor inhibitors. Multiomics profiling presented distinctive molecular characteristics of the large bile duct and the small bile duct of intrahepatic CCA. The immune landscape further revealed diverse tumor immune microenvironments, suggesting immune subtypes C1 and C5 might benefit from immune checkpoint therapy. TCN1 was identified as a potential CCA prognostic biomarker, promoting cell growth by enhancing vitamin B12 metabolism. CONCLUSIONS: We characterized the proteogenomic landscape of 217 CCAs with 197 paired normal adjacent tissues and identified their subtypes and potential therapeutic targets. The multiomics analyses with other databases and some functional validations have indicated strategies regarding the clinical, biological, and therapeutic approaches to the management of CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Proteogenómica , Humanos , Proteómica , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Microambiente Tumoral , Proteínas Portadoras , Proteínas de Unión al ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA