Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 121: 213-228, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39043349

RESUMEN

Chronic stress enhances the risk for psychiatric disorders and induces depression and cognitive impairment. Gamma oscillations are essential for neurocircuit function, emotion, and cognition. However, the influence of gamma entrainment by sensory stimuli on specific aspects of chronic stress-induced responses remains unclear. Mice were subjected to corticosterone (CORT) administration and chronic restraint stress (CRS) for weeks, followed by rhythmic gamma frequency light flickering exposure. Local field potentials (LFPs) were recorded from the V1, CA1, and PFC regions to verify the light flicker on gamma oscillations. Behavioral tests were used to examine stress-related and memory-related behaviors. Golgi staining was performed to observe changes in spine morphology. Synaptosomes were isolated to determine the expression of synapse-related proteins through immunoblotting. RNA sequencing (RNA-seq) was applied to explore specific changes in the transcriptome. Immunofluorescence staining, real-time quantitative polymerase chain reaction (qPCR), and ELISA were used to evaluate microglial activation and cytokine levels. In this study, we demonstrated that rhythmic 40 Hz LF attenuated stress-related behavior and cognitive impairments by ameliorating the microstructural alterations in spine morphology and increasing the expression of GluN2A and GluA1 in chronically stressed mice. Transcriptome analysis revealed that significantly downregulated genes in LF-exposed CRS mice were enriched in neuroimmune-related signaling pathways. Rhythmic 40 Hz LF exposure significantly decreased the number of Iba1-positive microglia in the PFC and hippocampus, and the expression levels of the M1 markers of microglia iNOS and CD68 were reduced significantly in CRS mice. In addition, 40 Hz LF exposure suppressed the secretion of cytokines IL-12, which could regulate the production of IFN-γ and IL-10 in stressed mice. Our results demonstrate that exposure to rhythmic 40 Hz LF induces the neuroimmune response and downregulation of neuroinflammation with attenuated stress-related behaviors and cognitive function in CRS-induced mice. Our findings highlight the importance of sensory-evoked gamma entrainment as a potential therapeutic strategy for stress-related disorders treatment. Abbreviations: CORT, Chronic corticosterone treatment; CRS, Chronic restraint stress; IACUC, Institutional Animal Care and Use Committee; LF, light flickers; FST, Forced swim test; NSFT, Novelty-suppressed feeding test; SPT, Sucrose preference test; NSFT, Novelty-suppressed feeding; qPCR, Quantitative real-time polymerase chain reaction; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; PVDF, polyvinylidene fluoride; PBS, phosphate-buffered saline; PBS-T, phosphate-buffered saline plus 0.1% Tween 20; PVDF, polyvinylidene fluoride; GFAP, Glial fibrillary acidic protein; DAPI, 4',6-Diamid- ino-2-phenylindole; Iba1, Ionized calcium-binding adaptor molecule 1; iNOS, Inducible nitric oxide synthase; IL-10, Interleukin-10; IL6, Interleukin 6; IL-1ß, Interleukin 1ß; IL-12, Interleukin 12; TNF-α, Tumor necrosis factor alpha; IFN-γ, Interferon-gamma; TLR6 and 9, Toll-like Receptor 6 and 9.

2.
J Psychopharmacol ; 38(5): 489-499, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38680011

RESUMEN

BACKGROUND: Psilocybin offers new hope for treating mood disorders due to its rapid and sustained antidepressant effects, as standard medications require weeks or months to exert their effects. However, the mechanisms underlying this action of psilocybin have not been identified. AIMS: To investigate whether psilocybin has rapid and sustained antidepressant-like effects in mice and investigate whether its potential mechanisms of action are related to promoted neuroplasticity. METHODS: We first examined the antidepressant-like effects of psilocybin in normal mice by the forced swimming test and in chronic corticosterone (CORT)-exposed mice by the sucrose preference test and novelty-suppressed feeding test. Furthermore, to explore the role of neuroplasticity in mediating the antidepressant-like effects of psilocybin, we measured structural neuroplasticity and neuroplasticity-associated protein levels in the prefrontal cortex (PFC) and hippocampus. RESULTS: We observed that a single dose of psilocybin had rapid and sustained antidepressant-like effects in both healthy mice and chronic CORT-exposed mice. Moreover, psilocybin ameliorated chronic CORT exposure-induced inhibition of neuroplasticity in the PFC and hippocampus, including by increasing neuroplasticity (total number of dendritic branches and dendritic spine density), synaptic protein (p-GluA1, PSD95 and synapsin-1) levels, BDNF-mTOR signalling pathway activation (BDNF, TrkB and mTOR levels), and promoting neurogenesis (number of DCX-positive cells). CONCLUSIONS: Our results demonstrate that psilocybin elicits robust, rapid and sustained antidepressant-like effects which is accompanied by the promotion of neuroplasticity in the PFC and hippocampus.


Asunto(s)
Antidepresivos , Factor Neurotrófico Derivado del Encéfalo , Corticosterona , Hipocampo , Plasticidad Neuronal , Corteza Prefrontal , Psilocibina , Animales , Plasticidad Neuronal/efectos de los fármacos , Antidepresivos/farmacología , Ratones , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Masculino , Psilocibina/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/tratamiento farmacológico , Ratones Endogámicos C57BL , Serina-Treonina Quinasas TOR/metabolismo , Proteína Doblecortina , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad
3.
Eur J Pharmacol ; 969: 176394, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331342

RESUMEN

TSPO, translocator protein (18 kDa) ligands have demonstrated consistent antidepression and anxiolytic effects in several preclinical studies. This study aimed to examine whether YL-IPA08[N-ethyl-N-(2-pyridinylmethyl)-2-(3,4-ichlorophenyl) -7-methylimidazo [1,2-a] pyridine-3-acetamide hydrochloride], a potent and selective TSPO ligand synthesized by our institute, could alleviate anxiety-related behaviors induced by electric shock (ES) and investigate its underlying mechanism. As expected, we showed that chronic treatment with YL-IPA08 significantly reversed anxiety-related behaviors induced by electrical stimulation (0.5 mA, 12 times, duration 1s, interval 10s) exposure. Using the analysis of RNA-sequencing (RNA-seq) technology, it was found that the differential genes associated with the anxiolytic effect of YL-IPA08 were mainly related to synaptic plasticity. Furthermore, YL-IPA08 restored the decreased levels of brain-derived neurotrophic factor (BDNF), synapse-related protein (e.g. synapsin-1 and post-synaptic density95, PSD95), and the number of doublecortin (DCX) + neurons in the hippocampus of post-ES mice. In addition, YL-IPA08 also enhanced the dendritic complexity and dendritic spine density of hippocampal dentate gyrus (DG) granule neurons. Meanwhile, the induction of long-term potentiation (LTP) was significantly enhanced by YL-IPA08. In summary, the findings from the current study showed that YL-IPA08 exerted a clear anxiolytic effect, which might be partially mediated by promoting hippocampal neuroplasticity.


Asunto(s)
Ansiolíticos , Imidazoles , Ratones , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Ligandos , Hipocampo , Piridinas/farmacología , Plasticidad Neuronal
4.
Artículo en Inglés | MEDLINE | ID: mdl-37949392

RESUMEN

Gamma oscillations have attracted much attention in the field of mood disorders, but their role in depression remains poorly understood. This study aimed to investigate whether gamma oscillations in the medial prefrontal cortex (mPFC) could serve as a predictive biomarker of depression. Chronic restraint stress (CRS) or lipopolysaccharide (LPS) were used to induce depression-like behaviors in mice; local field potentials (LFPs) in the mPFC were recorded by electrophysiological techniques; We found that both CRS and LPS induced significant depression-like behaviors in mice, including increasing immobility durations in the forced swimming test (FST) and tail suspension test (TST) and increasing the latency to feed in the novelty-suppressed feeding test (NSFT). Electrophysiological results suggested that CRS and LPS significantly reduced low and high gamma oscillations in the mPFC. Furthermore, a single injection of ketamine or scopolamine for 24 h significantly increased gamma oscillations and elicited rapid-acting antidepressant-like effects. In addition, fluoxetine treatment for 21 days significantly increased gamma oscillations and elicited antidepressant-like effects. Taken together, our findings suggest that gamma oscillations are strongly associated with depression, yielding new insights into investigating the predictive biomarkers of depression and the time course of antidepressant effects.


Asunto(s)
Depresión , Lipopolisacáridos , Ratones , Animales , Depresión/tratamiento farmacológico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Biomarcadores
5.
Artículo en Inglés | MEDLINE | ID: mdl-38065287

RESUMEN

Although clinical antidepressants have varied mechanisms of action, it remains unclear whether they may have a common mechanism underlying their antidepressant effects. We investigated the behavioral effects of five different antidepressants (differing in target, chemical structure, and rate of onset) and their effects on the firing activities of glutamatergic pyramidal neurons in the medial prefrontal cortex (mPFC) using the forced swimming test (FST) and electrophysiological techniques (in vivo). We employed fiber photometry recordings to validate the effects of antidepressants on the firing activity of pyramidal neurons. Additionally, multichannel electrophysiological recordings were conducted in mice exhibiting depressive-like behaviors induced by chronic restraint stress (CRS) to investigate whether antidepressants exert similar effects on pyramidal neurons in depressed mice. Behavioral tests were utilized for evaluating the depression model. We found that fluoxetine, duloxetine, vilazodone, YL-0919, and ketamine all increase the firing activities of glutamatergic pyramidal neurons (at least 57%) while exerting their initial onset of antidepressant effects. Fiber photometry revealed an increase in the calcium activity of pyramidal neurons in the mPFC at the onset of antidepressant effects. Furthermore, a significant reduction was observed in the firing activity of pyramidal neurons in the mPFC of CRS-exposed mice, which was reversed by antidepressants. Taken together, our findings suggested that five pharmacologically distinct classes of antidepressants share the common ability to increase the firing activity of pyramidal neurons, just different time, which might be a rate-limiting step in antidepressants onset. The study contributes to the body of knowledge of the mechanisms underlying antidepressant effects and paves the way for developing rapid-acting antidepressants.


Asunto(s)
Antidepresivos , Roedores , Ratones , Animales , Antidepresivos/farmacología , Células Piramidales , Fluoxetina/farmacología , Corteza Prefrontal
6.
Metab Brain Dis ; 38(6): 2065-2075, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37148433

RESUMEN

Neuroinflammation contributes to the pathogenesis of depression. Inulin-type oligosaccharides of Morinda officinalis (IOMO) exert antidepressant-like effects in rodents and patients with depression, while the underlying mechanisms remain unclear. This study used chronic restraint stress (CRS) and lipopolysaccharide (LPS) to induce depression-like behaviors in mice. Western blotting and ELISA analysis were used to investigate the effects of IOMO on inflammatory cytokine levels. Immunofluorescence analysis was used to investigate the effects of IOMO on hippocampal NLRP3 inflammasome and microglial cells. The results suggested that 6 weeks of CRS induced significant depression-like behaviors based on the sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST), which were accompanied by increases in the expression of IL-6 and the activation of hippocampal microglial cells. Chronic treatment with IOMO (25 mg/kg, i.g.) for 28 days significantly reversed these depression-like behaviors and inhibited the activation of microglial cells. Furthermore, LPS (0.5 mg/kg, i.p.) also significantly induced depression-like behaviors in the TST, FST, and novelty-suppressed feeding test (NSFT), as well as increased the expression of IL-1ß and caspase-1, and activated the microglial cells and the NLRP3 inflammasome in the hippocampus. Treatment with IOMO for 9 days significantly reversed these depression-like behaviors and normalized the LPS-induced activation of the microglial cells and NLRP3 inflammasome. Taken together, these results suggested that IOMO exerted antidepressant-like effects via hippocampal microglial NLRP3 inflammasome mediation followed by caspase-1 inhibition and the production of IL-1ß. These findings provide a basis for developing new antidepressants targeting the microglial NLRP3 inflammasome.


Asunto(s)
Inflamasomas , Morinda , Ratones , Animales , Inflamasomas/metabolismo , Inulina/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Morinda/metabolismo , Lipopolisacáridos/farmacología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Microglía/metabolismo , Hipocampo/metabolismo , Oligosacáridos/farmacología , Inflamación/metabolismo , Caspasas/metabolismo , Depresión/inducido químicamente , Estrés Psicológico/complicaciones
7.
Neurobiol Stress ; 24: 100536, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37057073

RESUMEN

Social hierarchy greatly impacts physical and mental health, but the relationship between social hierarchy and depression/anxiety and the underlying neural mechanism remain unclear. The present study used the tube test to determine the social hierarchy status of mice and then performed several behavioral tests to evaluate depression-like and anxiety-like behaviors. Electrophysiological techniques were used to record the firing activities of glutamatergic pyramidal neurons and local field potentials in the medial prefrontal cortex (mPFC). The results suggested that the mice in each cage (4 per cage) established a stable social hierarchy after 2 weeks. Subordinate mice displayed significantly fewer pushing and advancing behaviors, and more retreat behaviors compared with dominant mice. Furthermore, subordinate mice had significantly more immobility durations in the TST, but significantly fewer distances, entries, and time into the center in the OFT, as well as significantly less percent of distances, entries, and time into the open arms in the EPMT, compared with dominant mice, which indicated that subordinate mice displayed depression- and anxiety-like behaviors. In addition, chronic restraint stress (CRS) significantly induced depression- and anxiety-like behaviors in mice and altered social dominance behaviors in the tube test. CRS mice displayed significantly fewer pushing and advancing behaviors, and more retreat behaviors compared with control mice. Furthermore, low social rank and CRS significantly decreased the firing of pyramidal neurons and γ-oscillation activity in the mPFC. Taken together, the present study revealed an inverse relationship between social hierarchy and depression/anxiety, and the neural basis underlying this association might be the excitability of pyramidal neurons and γ oscillation in the mPFC. These findings established an important foundation for a depression/anxiety model based on social hierarchy and provided a new avenue for the development of therapies for stress-related mood disorders.

8.
Neuropharmacology ; 191: 108573, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33945826

RESUMEN

Currently available antidepressants, such as selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs), generally require weeks to months to produce a therapeutic response, but the mechanism of action underlying the delayed onset of antidepressant-like action remains to be elucidated. The balance between excitatory glutamatergic pyramidal neurons and inhibitory γ-aminobutyric acid (GABA) interneurons, i.e., the excitation:inhibition functional (E:I) balance, in the medial prefrontal cortex (mPFC) is critical in regulating several behaviors and might play an important mediating role in the mechanism of rapid antidepressant-like action reported by several studies. In the present study, the multichannel electrophysiological technique was used to record the firing activities of pyramidal neurons and interneurons and investigate the effects of a single dose of fluoxetine and ketamine (both 10 mg/kg, i.p.) on the E:I functional balance in the rat mPFC after 90 min or 24 h, and the forced swimming test (FST) was used to evaluate the antidepressant-like effects of fluoxetine and ketamine. The present study also explored the effects of chronic treatment with fluoxetine (10 mg/kg, i.g.) for 7 d or 21 d on the E:I functional balance in the mPFC. The present results suggested that a single dose of ketamine could both significantly increase the firing activities of pyramidal neurons and significantly decrease the firing activities of interneurons in the mPFC and exerted significant antidepressant-like action on the FST after 90 min and 24 h, but fluoxetine had no such effects under the same conditions. However, chronic treatment with fluoxetine for 21 d (but not 7 d) could significantly affect the firing activities of pyramidal neurons and interneurons in the mPFC. Taken together, the present results indicated that rapid regulation of the E:I functional balance in the mPFC might be an important common mechanism of rapid-acting antidepressants and the delayed onset of SSRIs might be partly attributed to their inability to rapidly regulate the E:I functional balance in the mPFC. The present study provided a new entry point to the development of rapid-acting antidepressants.


Asunto(s)
Antidepresivos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Fármacos actuantes sobre Aminoácidos Excitadores , Fluoxetina/farmacología , Ácido Glutámico , Interneuronas/efectos de los fármacos , Ketamina/farmacología , Masculino , Células Piramidales/efectos de los fármacos , Ratas , Ratas Endogámicas WF
9.
Front Pharmacol ; 12: 625547, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643051

RESUMEN

Posttraumatic stress disorder (PTSD) is a debilitating trauma and stressor-related disorder that has become a major neuropsychiatric problem, leading to substantial disruptions in individual health and societal costs. Our previous studies have demonstrated that hypidone hydrochloride (YL-0919), a novel combined selective 5-HT reuptake inhibitor/5-HT1A receptor partial agonist/5-HT6 receptor full agonist, exerts notable antidepressant- and anxiolytic-like as well as procognitive effects. However, whether YL-0919 exerts anti-PTSD effects and its underlying mechanisms are still unclear. In the present study, we showed that repeated treatment with YL-0919 caused significant suppression of contextual fear, enhanced anxiety and cognitive dysfunction induced by the time-dependent sensitization (TDS) procedure in rats and by inescapable electric foot-shock in a mouse model of PTSD. Furthermore, we found that repeated treatment with YL-0919 significantly reversed the accompanying decreased expression of the brain-derived neurotrophic factor (BDNF) and the synaptic proteins (synapsin1 and GluA1), and ameliorated the neuroplasticity disruption in the prefrontal cortex (PFC), including the dendritic complexity and spine density of pyramidal neurons. Taken together, the current study indicated that YL-0919 exerts clear anti-PTSD effects, which might be partially mediated by ameliorating the structural neuroplasticity by increasing the expression of BDNF and the formation of synaptic proteins in the PFC.

10.
Front Pharmacol ; 11: 586879, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324217

RESUMEN

Given the limited monkey models of depression available to date, as well as the procedural complexity and time investments that they involve, the ability to test the efficacy and time course of antidepressants in monkey models is greatly restricted. The present study attempted to build a simple and feasible monkey model of depression with chronic unpredictable stress (CUS) and evaluate the antidepressant effect and onset time of fluoxetine hydrochloride (FLX) and the new drug hypidone hydrochloride (YL-0919), a potent and selective 5-HT reuptake inhibitor, 5-HT1A receptor partial agonist and 5-HT6 receptor full agonist. Female cynomolgus monkeys with low social status in their colonies were selected and subjected to CUS for 8 weeks by means of food and water deprivation, space restriction, loud noise, strobe light, and intimidation with fake snakes. Huddling, self-clasping, locomotion and environmental exploration were monitored to evaluate behavioral changes. In addition, the window-opening test was used to evaluate the exploratory interest of the monkeys. The present results revealed that CUS-exposed monkeys displayed significant depression-like behaviors, including significant decreases in exploratory interest, locomotion, and exploration as well as significant increases in huddling and self-clasping behavior and the level of fecal cortisol after 8 weeks of CUS. Treatment with FLX (2.4 mg/kg, i. g.) or YL-0919 (1.2 mg/kg, i. g.) markedly reversed the depression-like behaviors caused by CUS, producing significant antidepressant effects. YL-0919 (once daily for 9 days) had a faster-onset antidepressant effect, compared with FLX (once daily for 17 days). In summary, the present study first established a CUS model using female cynomolgus monkeys with low social status and then successfully evaluated the onset time of 5-HTergic antidepressants. The results suggested that monkeys exposed to CUS displayed significant depression-like behaviors, and both FLX and YL-0919 produced antidepressant effects in this model. Moreover, YL-0919 appeared to act faster than FLX. The present study provides a promising prospect for the evaluation of fast-onset antidepressant drugs based on a CUS monkey model.

11.
Neuropharmacology ; 178: 108230, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32693005

RESUMEN

Anxiety disorders are the most prevalent group of mental disorders globally, leading to considerable losses in health, functioning and increase of medical costs. Till now, the search for novel pharmacological treatments is driven by the growing medical need to improve on the effectiveness and the side effect profile of existing drugs. In central nervous system, the mitochondrially located translocator protein (18 kDa, TSPO) serves as the rate-limiting step for neurosteroidogenesis and influences GABAergic transmission. Since 5-HT is one of the most comprehensively studied neurotransmitter systems in the anxiety field, in the present study, we want to investigate whether 5-HT system is involved in the anxiolytic-like effects of YL-IPA08, a novel TSPO ligand designed and synthesized at our institute. Our data showed that YL-IPA08 could potentiate the 5-HTP-induced head-twitch response, and the anxiolytic-like effect of YL-IPA08 was abolished by pCPA or 5,7-DHT pretreatment in mice. Furthermore, we found that YL-IPA08 increased the extracellular levels of 5-HT in the rat ventral hippocampus in freely moving rat using the rapid and validated HPLC coupled with microdialysis. In addition, 5-HT level was positively correlated with the level of allopregnanolone. The above results suggest that 5-HT neurotransmission may play a critical role in the anxiolytic-like effects of YL-IPA08.


Asunto(s)
Ansiedad/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Imidazoles/administración & dosificación , Imidazoles/metabolismo , Piridinas/administración & dosificación , Piridinas/metabolismo , Receptores de GABA/metabolismo , Serotonina/metabolismo , Transmisión Sináptica/fisiología , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/psicología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Microdiálisis/métodos , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA