Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Bioinspir Biomim ; 19(1)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37976535

RESUMEN

In this paper, a deep learning based framework has been developed to predict hydrodynamic forces on a mantle-undulated propulsion robot (MUPRo). A multiple proper orthogonal decomposition (MPOD) algorithm has been proposed to efficiently identify fluid features near the undulating mantle of the MUPRo globally and locally. The results indicate that theL2error of the solution states near the undulating boundary of the proposed MPOD algorithm converges almost linearly to 0.2%. Furthermore, a hydrodynamics prediction framework has been developed based on the proposed MPOD algorithm, where a long short-term memory neural network predicts the temporal coefficients of the MPOD spatial modes. The developed framework achieves economical and reliable predictions of hydrodynamic forces acting on the undulating boundary compared to simulations and experiments. Moreover, theL2error of the developed framework is one to two orders of magnitude lower than that of the frameworks based on the classical POD algorithm when the degrees of freedom are consistent. Finally, the reliability of the proposed MPOD-NIROM is discussed through an offline parameter planning case of an aquatic-inspired robot. The model presented in this paper can provide support for the offline parameter planning of aquatic-inspired robots.


Asunto(s)
Robótica , Hidrodinámica , Memoria a Corto Plazo , Reproducibilidad de los Resultados , Redes Neurales de la Computación
2.
Bioinspir Biomim ; 17(4)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35366655

RESUMEN

In this research, the propulsion of the proposed jellyfish-inspired mantle undulated propulsion robot (MUPRo) is optimized. To reliably predict the hydrodynamic forces acting on the robot, the proposed nonintrusive reduced-order model (NIROM) based on proper orthogonal decomposition (POD) additionally considers the POD basis that makes an important contribution to the features on the specified boundary. The proposed model establishes a mapping between the parameter-driven motion of the mantle and the evolution of the fluid characteristics around the swimmer. Moreover, to predict new cases where the input needs to be updated, the input of the proposed model is taken from the kinematics of the robot rather than extracted from full-order high-fidelity models. In this paper, it takes approximately 950 s to perform a simulation using the full-order high-fidelity model. However, the computational cost for one prediction with the proposed POD-NIROM is around 0.54 s, of which about 0.2 s is contributed by preprocessing. Compared with the NIROM based on the classic POD method, the proposed POD-NIROM can effectively update the input and reasonably predict the characteristics on the boundary. The analysis of the hydrodynamic performance of the MUPRo pinpoints that, over a certain period and with a certain undulation amplitude, the hydrodynamic force generated by the swinging-like mantle motion (k< 0.5) is greater, outperformingAequorea victoriain startup acceleration. It is demonstrated that considering a certain power loss and a certain tail beat amplitude, the wave-like mantle motion (k> 0.5) can produce greater propulsion, which means higher propulsion efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA