Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Data Brief ; 55: 110570, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38952951

RESUMEN

Bioactive compounds derived from natural products demonstrate a wide range of beneficial properties in cancer treatment. One popular approach to inhibiting cancer cell growth is by stimulating apoptosis. Interestingly, our research has discovered that traditional mushroom and isolated compounds from traditional herbs can induce apoptosis in A549 cells while inhibiting tyrosine kinase activities. We have identified two extracts from traditional mushrooms, Phallus indusiatus and Fomes rimosus (Berk.) Cooke, which exhibit promising abilities to activate apoptotic events in cells. Additionally, isolated compounds such as Chamuangone, Cannabigerol (CBG), Cannabidiol (CBD), and NP1-cyclic peptide have also demonstrated significant apoptotic activation capabilities. To further our understanding, we analyzed phosphoprotein changes in A549 cells exposed to these extracts and compounds, both with and without epidermal growth factor (EGF) stimulation. Our positive controls were two known drugs, Afatinib and Osimertinib, which are tyrosine kinase inhibitors with apoptotic stimulation abilities. In order to enrich our understanding of the kinase pathway, we conducted phosphoprotein enrichment analysis and identified altered phosphoproteins using LC-MS/MS. Across these testing conditions, we found that 1228 phosphoproteins were altered, providing valuable insights into the biochemical mechanisms underlying cell apoptosis in A549 cells through post-translational modifications of proteins. Furthermore, our findings not only shed light on the mechanisms of cell apoptosis in A549 cells but also offer promising avenues for future research and therapeutic development.

2.
ACS Appl Bio Mater ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39021071

RESUMEN

Improvement of nutritional value and reduction of antinutritional factors (ANFs) of soybean meal (SBM) for animal feed applications could be achieved by using bromelain immobilized onto bentonite (Bt)-carboxymethylcellulose (CMC) composites. The composite with mass ratio between CMC to calcium ion (Ca2+) at 1:20 provided the highest enzyme activity, immobilization yield higher than 95%, with superior thermal and storage stabilities. Performance of the immobilized bromelain for soybean protein hydrolysis was further studied. The results showed that at 60 °C, the immobilized bromelain exhibited the highest efficiency in enzymatic hydrolysis to release free alpha amino nitrogen (FAN) as a product with high selectivity and to effectively reduce SBM allergenic proteins within 30 min. In conclusion, immobilization of bromelain onto Bt-CMC composites leads to stability enhancement of the enzyme, enabling effective improvement in SBM quality in a short treatment time and showing great potential for application in animal feed industries.

3.
ACS Omega ; 9(23): 24739-24750, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38882140

RESUMEN

Seed aging is a complicated process influenced by environmental conditions, impacting biochemical processes in seeds and causing deterioration that results in reduced viability and vigor. In this study, we investigated the seed aging process of ridge gourd, which is one of the most exported commercial seeds in Thailand using sequential window acquisition of all theoretical fragment ion spectra mass spectrometry. A total of 855 proteins were identified among the two groups (0 d/15 d and 0 d/30 d). The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of differentially expressed proteins revealed that in ridge gourd seeds, the aging process altered the abundance of proteins related to the oxidative stress response, nutrient reservoir, and metabolism pathway. The most identified DEPs were mitochondrial proteins, ubiquitin-proteasome system proteins, ribosomal proteins, carbohydrate metabolism-related proteins, and stress response-related proteins. This study also presented the involvement of aconitase and glutathione pathway-associated enzymes in seed aging, with aconitase and total glutathione being determined as possible suggestive biomarkers for aged ridge gourd seeds. This acquired knowledge has the potential to considerably improve growing methods and seed preservation techniques, enhancing seed storage and maintenance.

4.
bioRxiv ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38915640

RESUMEN

Antibacterial proteins inhibiting Pseudomonas aeruginosa have been identified in various phages and explored as antibiotic alternatives. Here, we isolated a phiKZ-like phage, Churi, which encodes 364 open reading frames. We examined 15 early-expressed phage proteins for their ability to inhibit bacterial growth, and found that gp335, closely related to phiKZ-gp14, exhibits antibacterial activity. Similar to phiKZ-gp14, recently shown to form a complex with the P. aeruginosa ribosome, we predict experimentally that gp335 interacts with ribosomal proteins, suggesting its involvement in protein translation. GFP-tagged gp335 clusters around the phage nucleus as early as 15 minutes post-infection and remains associated with it throughout the infection, suggesting its role in protein expression in the cell cytoplasm. CRISPR-Cas13-mediated deletion of gp355 reveals that the mutant phage has a prolonged latent period. Altogether, we demonstrate that gp335 is an antibacterial protein of nucleus-forming phages that associates with the ribosomes at the phage nucleus.

5.
Environ Pollut ; 355: 124199, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788990

RESUMEN

Phytoremediation has become famous for removing particulate matter (PM) and volatile organic compounds (VOCs), but the ability is affected by plant health. Lately, the priming technique was a simple approach to studying improving plant tolerance against abiotic stress by specific metabolites that accumulated, known as "memory", but the mechanism underlying this mechanism and how long this "memory" was retained in the plant was a lack of study. Sansevieria trifasciata was primed for one week for PM and VOC stress to improve plant efficiency on PM and VOC. After that, the plant was recovered for two- or five-weeks, then re-exposed to the same stress with similar PM and VOC concentrations from cigarette smoke. Primed S. trifasciata showed improved removal of PMs entirely within 2 h and VOC within 24 h. The primed plant can maintain a malondialdehyde (MDA) level and retain the "memory" for two weeks. Metabolomics analysis showed that an ornithine-related compound was accumulated as a responsive metabolite under exposure to PM and VOC stress. Exogenous ornithine can maintain plant efficiency and prevent stress by increasing proline and antioxidant enzymes. This study is the first to demonstrate plant "memory" mechanisms under PM and VOC stress.


Asunto(s)
Biodegradación Ambiental , Material Particulado , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Contaminantes Atmosféricos/metabolismo , Asparagaceae/metabolismo , Malondialdehído/metabolismo
6.
PLoS One ; 19(2): e0296526, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38324553

RESUMEN

The study introduces a methodology that utilizes data-driven approaches to optimize coffee drying operations. This is achieved through the integration of ambient sensor data and chemical analysis. This statement underscores the significance of temperature regulation, humidity levels, and light intensity within the context of coffee production. There exists a positive correlation between elevated temperatures and increased rates of drying, but humidity has a role in determining the duration of the drying process and the preservation of aromatic compounds. The significance of light intensity in dry processing is also crucial, since excessive exposure can compromise both the taste and quality of the product. The findings of chemical investigations demonstrate a correlation between environmental factors and the composition of coffee. Specifically, increased temperatures are associated with higher quantities of caffeine, while the concentration of chlorogenic acid is influenced by humidity levels. The research additionally underscores the variations in sensory characteristics among various processing techniques, underscoring the significance of procedure choice in attaining desirable taste profiles. The integration of weather monitoring, chemical analysis, and sensory assessments is a robust approach to augmenting quality control within the coffee sector, thereby facilitating the provision of great coffee products to discerning consumers.


Asunto(s)
Café , Compuestos Orgánicos Volátiles , Café/química , Cafeína/análisis , Desecación/métodos , Cromatografía de Gases , Compuestos Orgánicos Volátiles/análisis
7.
FEMS Yeast Res ; 242024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38331422

RESUMEN

Only trace amount of isobutanol is produced by the native Saccharomyces cerevisiae via degradation of amino acids. Despite several attempts using engineered yeast strains expressing exogenous genes, catabolite repression of glucose must be maintained together with high activity of downstream enzymes, involving iron-sulfur assimilation and isobutanol production. Here, we examined novel roles of nonfermentable carbon transcription factor Znf1 in isobutanol production during xylose utilization. RNA-seq analysis showed that Znf1 activates genes in valine biosynthesis, Ehrlich pathway and iron-sulfur assimilation while coupled deletion or downregulated expression of BUD21 further increased isobutanol biosynthesis from xylose. Overexpression of ZNF1 and xylose-reductase/dehydrogenase (XR-XDH) variants, a xylose-specific sugar transporter, xylulokinase, and enzymes of isobutanol pathway in the engineered S. cerevisiae pho13gre3Δ strain resulted in the superb ZNXISO strain, capable of producing high levels of isobutanol from xylose. The isobutanol titer of 14.809 ± 0.400 g/L was achieved, following addition of 0.05 g/L FeSO4.7H2O in 5 L bioreactor. It corresponded to 155.88 mg/g xylose consumed and + 264.75% improvement in isobutanol yield. This work highlights a new regulatory control of alternative carbon sources by Znf1 on various metabolic pathways. Importantly, we provide a foundational step toward more sustainable production of advanced biofuels from the second most abundant carbon source xylose.


Asunto(s)
Butanoles , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ingeniería Metabólica , Xilosa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Carbono/metabolismo , Azufre/metabolismo , Hierro/metabolismo , Fermentación , Proteínas de Unión al ADN/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Sci Rep ; 14(1): 2366, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287097

RESUMEN

Sericin, a silk protein from Bombyx mori (silkworms), has many applications, including cosmetics, anti-inflammation, and anti-cancer. Sericin complexes with nanoparticles have shown promise for breast cancer cell lines. Apoptosis, a programmed cell death mechanism, stops cancer cell growth. This study found that Sericin urea extract significantly affected HCT116 cell viability (IC50 = 42.00 ± 0.002 µg/mL) and caused apoptosis in over 80% of treated cells. S-FTIR analysis showed significant changes in Sericin-treated cells' macromolecule composition, particularly in the lipid and nucleic acid areas, indicating major cellular modifications. A transcriptomics study found upregulation of the apoptotic signaling genes FASLG, TNFSF10, CASP3, CASP7, CASP8, and CASP10. Early apoptotic proteins also showed that BAD, AKT, CASP9, p53, and CASP8 were significantly upregulated. A proteomics study illuminated Sericin-treated cells' altered protein patterns. Our results show that Sericin activated the extrinsic apoptosis pathway via the caspase cascade (CASP8/10 and CASP3/7) and the death receptor pathway, involving TNFSF10 or FASLG, in HCT116 cells. Upregulation of p53 increases CASP8, which activates CASP3 and causes HCT116 cell death. This multi-omics study illuminates the molecular mechanisms of Sericin-induced apoptosis, sheds light on its potential cancer treatment applications, and helps us understand the complex relationship between silk-derived proteins and cellular processes.


Asunto(s)
Bombyx , Sericinas , Animales , Humanos , Sericinas/metabolismo , Células HCT116 , Caspasa 3/metabolismo , Proteómica , Proteína p53 Supresora de Tumor/metabolismo , Seda/metabolismo , Bombyx/genética , Perfilación de la Expresión Génica
9.
Poult Sci ; 103(1): 103261, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992618

RESUMEN

This study investigated the impacts of Wooden Breast (WB) abnormality on in vitro protein digestibility and cytotoxicity of cooked chicken breast meat. Chicken breasts without (non-WB, n = 6) or with severe WB condition (WB, n = 6) were cooked and subjected to static in vitro protein digestion. The results showed no significant differences in free-NH2, degree of hydrolysis and distribution of peptide molecular weight between non-WB and WB samples at late intestinal digestion (P5), suggesting no adverse effects of WB on protein digestibility. Based on peptidomic analysis, P5 fraction of WB showed greater content of peptides with oxidative modification than that of non-WB. Untargeted metabolomics did not find any metabolites with potential toxicity either in non-WB and WB. Hydrolyzed non-WB and WB (1.56-100 µg/mL) did not affect viability of Caco-2 and Vero cells but addition of WB samples reduced Caco-2 cell viability compared with non-WB.


Asunto(s)
Pollos , Enfermedades Musculares , Chlorocebus aethiops , Animales , Humanos , Células CACO-2 , Células Vero , Músculos Pectorales/química , Carne/análisis , Enfermedades Musculares/etiología , Enfermedades Musculares/veterinaria , Proteínas/análisis
10.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958849

RESUMEN

Andrographolide, a medicinal compound, exhibits several pharmacological activities, including antiviral and anticancer properties. Previously, we reported that andrographolide inhibits Epstein-Barr virus (EBV) lytic reactivation, which is associated with viral transmission and oncogenesis in epithelial cancers, including head-and-neck cancer (HNC) cells. However, the underlying mechanism through which andrographolide inhibits EBV lytic reactivation and affects HNC cells is poorly understood. Therefore, we investigated these mechanisms using EBV-positive HNC cells and the molecular modeling and docking simulation of protein. Based on the results, the expression of EBV lytic genes and viral production were significantly inhibited in andrographolide-treated EBV-positive HNC cells. Concurrently, there was a reduction in transcription factors (TFs), myocyte enhancer factor-2D (MEF2D), specificity protein (SP) 1, and SP3, which was significantly associated with a combination of andrographolide and sodium butyrate (NaB) treatment. Surprisingly, andrographolide treatment also significantly induced the expression of DNA Methyltransferase (DNMT) 1, DNMT3B, and histone deacetylase (HDAC) 5 in EBV-positive cells. Molecular modeling and docking simulation suggested that HDAC5 could directly interact with MEF2D, SP1, and SP3. In our in vitro study, andrographolide exhibited a stronger cytotoxic effect on EBV-positive cells than EBV-negative cells by inducing cell death. Interestingly, the proteome analysis revealed that the expression of RIPK1, RIPK3, and MLKL, the key molecules for necroptosis, was significantly greater in andrographolide-treated cells. Taken together, it seems that andrographolide exhibits concurrent activities in HNC cells; it inhibits EBV lytic reactivation by interrupting the expression of TFs and induces cell death, probably via necroptosis.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias de Cabeza y Cuello , Humanos , Herpesvirus Humano 4/fisiología , Activación Viral , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Muerte Celular
11.
Foods ; 12(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37959013

RESUMEN

Coffee, a widely consumed beverage worldwide, undergoes postharvest methods that influence its physicochemical characteristics, while roasting modulates its composition, affecting sensory attributes. This study investigates the impact of distinct postharvest methods (washed and natural) on the antidiabetic activities, including α-amylase and DPP4, as well as the phytochemical profiling of geological indicator (GI) coffee beans (Coffea arabica L.). The results indicate notable differences in antidiabetic activity and phytochemical profiles between washed and natural processing methods. Coffee beans processed naturally exhibit significant suppression of DPP4 and α-amylase activities (p-value < 0.01) compared to beans processed using the washed technique. TLC profiling using the ratios of the solvent systems of ethyl acetate/dichloromethane (DCM) and acetone/DCM as separation solvents reveals dominant spots for the washed technique. LC-MS/MS-based untargeted metabolomics analysis using principle component analysis (PCA) clearly segregates samples processed by the natural and washed techniques without any overlap region. A total of 1114 phytochemicals, including amino acids and short peptides, are annotated. The natural processing of coffee beans has been shown to yield a slightly higher content of chlorogenic acid (CGA) compared to the washed processing method. Our findings highlight the distinct bioactivities and phytochemical compositions of GI coffee beans processed using different techniques. This information can guide consumers in choosing coffee processing methods that offer potential benefits in terms of alternative treatment for diabetes.

12.
Front Vet Sci ; 10: 1174078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799407

RESUMEN

Seminal plasma proteins have recently been reported to play a significant role as valuable materials for understanding male reproductive biology, identifying causes of fertility problems, and developing reproductive biomarkers. Proteomic analysis of seminal plasma holds promise in advancing the understanding of male Asian elephant reproductive biology. This study aims to explore seminal plasma proteins of Asian elephants and their probable functions to provide fundamental information about male reproduction in this species. The protein solution from pooled seminal plasma from 10 bulls (a total of 33 ejaculates) was digested into peptides and identified using LC-MS/MS. Out of 986 proteins, 597 were mapped and matched with 58 species in UniProt databases, including Elephas maximus. These mapped proteins were mostly involved in binding function, catalytic activity, cellular process, and metabolic process. Only 29 mapped proteins were recognized to be related in reproductive process, mainly associated in spermatogenesis and sperm capacitation. Additionally, several seminal plasma proteins related to fertility or semen quality in other mammals were also found in Asian elephant semen, such as keratin type I, aldose reductase, thrombospondon-1, fibronectin 1, platelet-activating factor acetyl hydrolase, mannosidase, and semenogelin-2. This discovery clearly reveals the beneficial protein profile in seminal plasma of the Asian elephant and serves as a crucial step in investigating infertility and poor semen quality in this valuable species.

13.
PeerJ ; 11: e16143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810790

RESUMEN

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is listed as a highly prioritized pathogen by the World Health Organization (WHO) to search for effective antimicrobial agents. Previously, we isolated a soil Brevibacillus sp. strain SPR19 from a botanical garden, which showed anti-MRSA activity. However, the active substances were still unknown. Methods: The cell-free supernatant of this bacterium was subjected to salt precipitation, cation exchange, and reversed-phase chromatography. The antimicrobial activity of pure substances was determined by broth microdilution assay. The peptide sequences and secondary structures were characterized by tandem mass spectroscopy and circular dichroism (CD), respectively. The most active anti-MRSA peptide underwent a stability study, and its mechanism was determined through scanning electron microscopy, cell permeability assay, time-killing kinetics, and biofilm inhibition and eradication. Hemolysis was used to evaluate the peptide toxicity. Results: The pure substances (BrSPR19-P1 to BrSPR19-P5) were identified as new peptides. Their minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) against S. aureus and MRSA isolates ranged from 2.00 to 32.00 and 2.00 to 64.00 µg/mL, respectively. The sequence analysis of anti-MRSA peptides revealed a length ranging from 12 to 16 residues accompanied by an amphipathic structure. The physicochemical properties of peptides were predicted such as pI (4.25 to 10.18), net charge at pH 7.4 (-3 to +4), and hydrophobicity (0.12 to 0.96). The CD spectra revealed that all peptides in the water mainly contained random coil structures. The increased proportion of α-helix structure was observed in P2-P5 when incubated with SDS. P2 (NH2-MFLVVKVLKYVV-COOH) showed the highest antimicrobial activity and high stability under stressed conditions such as temperatures up to 100 °C, solution of pH 3 to 10, and proteolytic enzymes. P2 disrupted the cell membrane and caused bacteriolysis, in which its action was dependent on the incubation time and peptide concentration. Antibiofilm activity of P2 was determined by which the half-maximal inhibition of biofilm formation was observed at 2.92 and 4.84 µg/mL for S. aureus TISTR 517 and MRSA isolate 2468, respectively. Biofilm eradication of tested pathogens was found at the P2 concentration of 128 µg/mL. Furthermore, P2 hemolytic activity was less than 10% at concentrations up to 64 µg/mL, which reflected the hemolysis index thresholds of 32. Conclusion: Five novel anti-MRSA peptides were identified from SPR19. P2 was the most active peptide and was demonstrated to cause membrane disruption and cell lysis. The P2 activity was dependent on the peptide concentration and exposure time. This peptide had antibiofilm activity against tested pathogens and was compatible with human erythrocytes, supporting its potential use as an anti-MRSA agent in this post-antibiotic era.


Asunto(s)
Antiinfecciosos , Brevibacillus , Staphylococcus aureus Resistente a Meticilina , Humanos , Staphylococcus aureus , Hemólisis , Péptidos/química , Antiinfecciosos/farmacología , Biopelículas
14.
Medicina (Kaunas) ; 59(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37629666

RESUMEN

Background and Objectives: Natural products have proven to be a valuable source for the discovery of new candidate drugs for cancer treatment. This study aims to investigate the potential therapeutic effects of "Kerra™", a natural extract derived from a mixture of nine medicinal plants mentioned in the ancient Thai scripture named the Takxila Scripture, on HCT116 cells. Materials and Methods: In this study, the effect of the Kerra™ extract on cancer cells was assessed through cell viability assays. Apoptotic activity was evaluated by examining the apoptosis characteristic features. A proteomics analysis was conducted to identify proteins and pathways associated with the extract's mechanism of action. The expression levels of apoptotic protein markers were measured to validate the extract's efficacy. Results: The Kerra™ extract demonstrated a dose-dependent inhibitory effect on the cells, with higher concentrations leading to decreased cell viability. Treatment with the extract for 72 h induced characteristic features of early and late apoptosis, as well as cell death. An LC-MS/MS analysis identified a total of 3406 proteins. The pathway analysis revealed that the Kerra™ extract stimulated apoptosis and cell death in colorectal cancer cell lines and suppressed cell proliferation in adenocarcinoma cell lines through the EIF2 signaling pathway. Upstream regulatory proteins, including cyclin-dependent kinase inhibitor 1A (CDKN1A) and MYC proto-oncogene, bHLH transcription factor (MYC), were identified. The expressions of caspase-8 and caspase-9 were significantly elevated by the Kerra™ extract compared to the chemotherapy drug Doxorubicin (Dox). Conclusions: These findings provide strong evidence for the ability of the Kerra™ extract to induce apoptosis in HCT116 colon cancer cells. The extract's efficacy was demonstrated by its dose-dependent inhibitory effect, induction of apoptotic activity, and modulation of key proteins involved in cell death and proliferation pathways. This study highlights the potential of Kerra™ as a promising therapeutic agent in cancer treatment.


Asunto(s)
Antineoplásicos , Células HCT116 , Extractos Vegetales , Proteómica , Cromatografía Liquida , Células HCT116/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Espectrometría de Masas en Tándem , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Tailandia , Medicina Tradicional
15.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569391

RESUMEN

Brevibacillus sp. SPR20 produced potentially antibacterial substances against methicillin-resistant Staphylococcus aureus (MRSA). The synthesis of these substances is controlled by their biosynthetic gene clusters. Several mutagenesis methods are used to overcome the restriction of gene regulations when genetic information is absent. Atmospheric and room temperature plasma (ARTP) is a powerful technique to initiate random mutagenesis for microbial strain improvement. This study utilized an argon-based ARTP to conduct the mutations on SPR20. The positive mutants of 40% occurred. The M27 mutant exhibited an increase in anti-MRSA activity when compared to the wild-type strain, with the MIC values of 250-500 and 500 µg/mL, respectively. M27 had genetic stability because it exhibited constant activity throughout fifteen generations. This mutant had similar morphology and antibiotic susceptibility to the wild type. Comparative proteomic analysis identified some specific proteins that were upregulated in M27. These proteins were involved in the metabolism of amino acids, cell structure and movement, and catalytic enzymes. These might result in the enhancement of the anti-MRSA activity of the ARTP-treated SPR20 mutant. This study supports the ARTP technology designed to increase the production of valuable antibacterial agents.


Asunto(s)
Brevibacillus , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Brevibacillus/genética , Temperatura , Proteómica , Mutagénesis , Antibacterianos/farmacología
16.
Tuberculosis (Edinb) ; 141: 102366, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37379738

RESUMEN

Inhalation of Mycobacterium tuberculosis (Mtb) bacilli can lead to a range of TB categories including early clearance (EC), latent TB infection (LTBI) and active TB (ATB). There are few biomarkers available to differentiate among these TB categories: effective new biomarkers are badly needed. Here, we analyzed the serum proteins from 26 ATB cases, 20 LTBI cases, 34 EC cases and 38 healthy controls (HC) using label-free LC-MS/MS. The results were analyzed using MaxQuant software and matched to three different bacterial proteomics databases, including Mtb, Mycobacterium spp. and normal lung flora. PCA of protein candidates using the three proteomics databases revealed 44.5% differentiation power to differentiate among four TB categories. There were 289 proteins that showed potential for distinguishing between each pair of groups among TB categories. There were 50 candidate protein markers specifically found in ATB and LTBI but not in HC and EC groups. Decision trees using the top five candidate biomarkers (A0A1A2RWZ9, A0A1A3FMY8, A0A1A3KIY2, A0A5C7MJH5 and A0A1X0XYR3) had 92.31% accuracy to differentiate among TB categories and the accuracy was increased to 100% when using 10 candidate biomarkers. Our study shows that proteins expressed from Mycobacterium spp. have the potential to be used to differentiate among TB categories.


Asunto(s)
Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , Tuberculosis Latente/microbiología , Proteómica , Cromatografía Liquida , Espectrometría de Masas en Tándem , Tuberculosis/microbiología , Biomarcadores
17.
Chem Biodivers ; 20(8): e202300552, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37345919

RESUMEN

Light-emitting plants (LEPs) provides light in areas without electricity. The phosphorescent compound was used as a lighting material for LEP development. However, using the phosphorescent compound for LEPs development required optimization and phytotoxicity evaluation. Strontium aluminate (SrAl2 O4 ) is a phosphorescent compound that can glow for a long time and is easily recharged by visible light. In this study, using SrAl2 O4 to develop LEPs was evaluated. Additionally, plant stress under SrAl2 O4 was investigated. Metabolomic analysis can explain the possible mechanism of plants' stress under SrAl2 O4 . After, injecting 3 mL of 5 % (w/v) SrAl2 O4 products 1, 2, and 3 into the stem of Ipomoea aquatica, the result showed that SrAl2 O4 products 2 and 3 caused oxidative stress. The metabolomic analysis also indicated that I. aquatica responded to SrAl2 O4 product 1 by increasing pipecolic acid and salicylic acid, while I. aquatica injected with SrAl2 O4 products 2 and 3 showed a decrease in salicylic acid around 0.005 and 0.061-fold, respectively, compared to control plants. and an excess accumulation of MDA around 10.00-12.00 µmol g-1 FW. A 15 % concentration of SrAl2 O4 can be used for LEPs development, enabling photoemission 18-fold for 50 min. SrAl2 O4 product 1 has the potential to be a material for LEPs.


Asunto(s)
Luz , Estroncio , Desarrollo de la Planta
18.
Artículo en Inglés | MEDLINE | ID: mdl-37284956

RESUMEN

Nowadays, people are interested to use plants, especially air-purifying plants, in residential and other indoor settings to purify indoor air and increase the green area in the building. In this study, we investigated the effect of water deficit and low light intensity on the physiology and biochemistry of popular ornamental plants, including Sansevieria trifasciata, Episcia cupreata and Epipremnum aureum. Plants were grown under low light intensity in the range of 10-15 µmol quantum m-2 s-1 and 3 days of water deficit. The results showed that these three ornamental plants responded to water deficit with different pathways. Metabolomic analysis indicated that water deficit affected Episcia cupreata and Epipremnum aureum by inducing a 1.5- to 3-fold increase of proline and a 1.1- to 1.6-fold increase in abscisic acid compared to well-watered conditions, which led to hydrogen peroxide accumulation. This resulted in a reduction of stomatal conductance, photosynthesis rate and transpiration. Sansevieria trifasciata responded to water deficit by significantly increasing gibberellin by around 2.8-fold compared to well-watered plants and proline contents by around 4-fold, while stomatal conductance, photosynthesis rate and transpiration were maintained. Notably, proline accumulation under water deficit stress could be attributed to both gibberellic acid and abscisic acid, depending on plant species. Therefore, the enhancement of proline accumulation in ornamental plants under water deficit could be detected early from day 3 after water deficit conditions, and this compound can be used as a key compound for real-time biosensor development in detecting plant stress under water deficit in a future study.

19.
Phytochemistry ; 211: 113701, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37127017

RESUMEN

Ten undescribed benzophenones, schomburginones A-J, together with 14 known analogs were isolated from the leaves of Garcinia schomburgkiana, an edible plant native to the Indochina region. The structures of the undescribed compounds were elucidated by NMR combined with HRMS spectroscopy, while their absolute configurations were determined using ECD and single-crystal X-ray diffraction analysis. The isolated metabolites represent benzophenone derivatives containing a modified monoterpene unit, including tri- and tetracyclic skeletons, which are rarely found in genus Garcinia. The cytotoxic evaluation on three cancerous cell lines demonstrated that schomburginone G, schomburginone H, and 3-geranyl-2,4,6-trihydroxybenzophenone were active against HeLa cells with IC50 values in the range of 12.2-15.7 µM, respectively, and selective compared to the non-cancerous L929 cells (SI > 3.5). In addition, the three cytotoxic compounds together with clusiacyclol A showed significant NO inhibitory activity in RAW 264.7 macrophage cells over 85% inhibition without obvious cytotoxicity at a final concentration of 100 µM. The promising activities of these compounds in cytotoxic and anti-inflammatory assays make them attractive for further study in the development of anticancer drugs.


Asunto(s)
Antineoplásicos Fitogénicos , Antineoplásicos , Garcinia , Xantonas , Humanos , Células HeLa , Estructura Molecular , Garcinia/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Benzofenonas/farmacología , Benzofenonas/química , Xantonas/química
20.
Foods ; 12(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36832854

RESUMEN

Obesity is a global health concern. Physical activities and eating nutrient-rich functional foods can prevent obesity. In this study, nano-liposomal encapsulated bioactive peptides (BPs) were developed to reduce cellular lipids. The peptide sequence NH2-PCGVPMLTVAEQAQ-CO2H was chemically synthesized. The limited membrane permeability of the BPs was improved by encapsulating the BPs with a nano-liposomal carrier, which was produced by thin-layer formation. The nano-liposomal BPs had a diameter of ~157 nm and were monodispersed in solution. The encapsulation capacity was 61.2 ± 3.2%. The nano-liposomal BPs had no significant cytotoxicity on the tested cells, keratinocytes, fibroblasts, and adipocytes. The in vitro hypolipidemic activity significantly promoted the breakdown of triglycerides (TGs). Lipid droplet staining was correlated with TG content. Proteomics analysis identified 2418 differentially expressed proteins. The nano-liposomal BPs affected various biochemical pathways beyond lipolysis. The nano-liposomal BP treatment decreased the fatty acid synthase expression by 17.41 ± 1.17%. HDOCK revealed that the BPs inhibited fatty acid synthase (FAS) at the thioesterase domain. The HDOCK score of the BPs was lower than that of orlistat, a known obesity drug, indicating stronger binding. Proteomics and molecular docking analyses confirmed that the nano-liposomal BPs were suitable for use in functional foods to prevent obesity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...