Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 19858, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400804

RESUMEN

SARS-CoV-2 variants accumulating immune escape mutations provide a significant risk to vaccine-induced protection against infection. The novel variant of concern (VoC) Omicron BA.1 and its sub-lineages have the largest number of amino acid alterations in its Spike protein to date. Thus, they may efficiently escape recognition by neutralizing antibodies, allowing breakthrough infections in convalescent and vaccinated individuals in particular in those who have only received a primary immunization scheme. We analyzed neutralization activity of sera from individuals after vaccination with all mRNA-, vector- or heterologous immunization schemes currently available in Europe by in vitro neutralization assay at peak response towards SARS-CoV-2 B.1, Omicron sub-lineages BA.1, BA.2, BA.2.12.1, BA.3, BA.4/5, Beta and Delta pseudotypes and also provide longitudinal follow-up data from BNT162b2 vaccinees. All vaccines apart from Ad26.CoV2.S showed high levels of responder rates (96-100%) towards the SARS-CoV-2 B.1 isolate, and minor to moderate reductions in neutralizing Beta and Delta VoC pseudotypes. The novel Omicron variant and its sub-lineages had the biggest impact, both in terms of response rates and neutralization titers. Only mRNA-1273 showed a 100% response rate to Omicron BA.1 and induced the highest level of neutralizing antibody titers, followed by heterologous prime-boost approaches. Homologous BNT162b2 vaccination, vector-based AZD1222 and Ad26.CoV2.S performed less well with peak responder rates of 48%, 56% and 9%, respectively. However, Omicron responder rates in BNT162b2 recipients were maintained in our six month longitudinal follow-up indicating that individuals with cross-protection against Omicron maintain it over time. Overall, our data strongly argue for booster doses in individuals who were previously vaccinated with BNT162b2, or a vector-based primary immunization scheme.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pruebas de Neutralización , Anticuerpos Antivirales , Vacunas contra la COVID-19 , ARN Mensajero , Ad26COVS1 , Vacuna BNT162 , COVID-19/prevención & control , ChAdOx1 nCoV-19 , Vacunación
2.
Viruses ; 14(6)2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35746764

RESUMEN

While SARS-CoV-2 detection in sputum and swabs from the upper respiratory tract has been used as a diagnostic tool, virus quantification showed poor correlation to disease outcome and thus, poor prognostic value. Although the pulmonary compartment represents a relevant site for viral load analysis, limited data exploring the lower respiratory tract is available, and its association to clinical outcomes is relatively unknown. Using bronchoalveolar lavage (BAL) and serum samples, we quantified SARS-CoV-2 copy numbers in the pulmonary and systemic compartments of critically ill patients admitted to the intensive care unit of a COVID-19 referral hospital in Croatia during the second and third pandemic waves. Clinical data, including 30-day survival after ICU admission, were included. We found that elevated SARS-CoV-2 copy numbers in both BAL and serum samples were associated with fatal outcomes. Remarkably, the highest and earliest viral loads after initiation of mechanical ventilation support were increased in the non-survival group. Our results imply that viral loads in the lungs contribute to COVID-19 disease severity, while blood titers correlate with lung virus titers, albeit at a lower level. Moreover, they suggest that BAL SARS-CoV-2 copy number quantification at ICU admission may provide a predictive parameter of clinical COVID-19 outcomes.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enfermedad Crítica , Humanos , Pulmón , Carga Viral
3.
BMC Med ; 20(1): 102, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236358

RESUMEN

BACKGROUND: The COVID-19 pandemic is caused by the betacoronavirus SARS-CoV-2. In November 2021, the Omicron variant was discovered and immediately classified as a variant of concern (VOC), since it shows substantially more mutations in the spike protein than any previous variant, especially in the receptor-binding domain (RBD). We analyzed the binding of the Omicron RBD to the human angiotensin-converting enzyme-2 receptor (ACE2) and the ability of human sera from COVID-19 patients or vaccinees in comparison to Wuhan, Beta, or Delta RBD variants. METHODS: All RBDs were produced in insect cells. RBD binding to ACE2 was analyzed by ELISA and microscale thermophoresis (MST). Similarly, sera from 27 COVID-19 patients, 81 vaccinated individuals, and 34 booster recipients were titrated by ELISA on RBDs from the original Wuhan strain, Beta, Delta, and Omicron VOCs. In addition, the neutralization efficacy of authentic SARS-CoV-2 wild type (D614G), Delta, and Omicron by sera from 2× or 3× BNT162b2-vaccinated persons was analyzed. RESULTS: Surprisingly, the Omicron RBD showed a somewhat weaker binding to ACE2 compared to Beta and Delta, arguing that improved ACE2 binding is not a likely driver of Omicron evolution. Serum antibody titers were significantly lower against Omicron RBD compared to the original Wuhan strain. A 2.6× reduction in Omicron RBD binding was observed for serum of 2× BNT162b2-vaccinated persons. Neutralization of Omicron SARS-CoV-2 was completely diminished in our setup. CONCLUSION: These results indicate an immune escape focused on neutralizing antibodies. Nevertheless, a boost vaccination increased the level of anti-RBD antibodies against Omicron, and neutralization of authentic Omicron SARS-CoV-2 was at least partially restored. This study adds evidence that current vaccination protocols may be less efficient against the Omicron variant.


Asunto(s)
COVID-19 , Vacuna BNT162 , COVID-19/prevención & control , Humanos , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
4.
Nutrients ; 13(8)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34445013

RESUMEN

Bovine lactoferrin (bLf), a component of milk and a dietary supplement, modulates intestinal immunity at effector and inductor sites. Considering the regional difference in intestinal compartments and the dynamics of local cytokine-producing cells in the gut across time, the aim of this work was to characterize the effects of bLf on the proximal small intestine in a BALB/c murine model of oral administration. Male BALB/c mice were treated with oral bLf vs. saline control as mock by buccal deposition for 28 days. Intestinal secretions were obtained at different time points and cells were isolated from Peyer's patches (PP) and lamina propria (LP) of the proximal small intestine as representative inductor and effector sites, respectively. Total and specific anti-bLF IgA and IgM were determined by enzyme-immuno assay; the percentages of IgA+ and IgM+ plasma cells (PC) and cytokine-producing CD4+ T cells of PP and LP were analyzed by flow cytometry. We found that total and bLf-specific IgA and IgM levels were increased in the intestinal secretions of the bLf group in comparison to mock group and day 0. LP IgA+ PC and IgM+ PC presented an initial elevation on day 7 and day 21, respectively, followed by a decrease on day 28 in comparison to mock. Higher percentages of CD4+ T cells in LP were found in the bLf group. Cytokines-producing CD4+ T cells populations presented a pattern of increases and decreases in the bLf group in both LP and PP. Transforming growth factor beta (TGF-ß)+ CD4+ T cells showed higher percentages after bLf administration with a marked peak at day 21 in both LP and PP in comparison to mock-treated mice. Oral bLf exhibits complex immune properties in the proximal small intestine, where temporal monitoring of the inductor and effector compartments reveals patterns of rises and falls of different cell populations. Exceptionally, TGF-ß+ CD4+ T cells show consistent higher numbers after bLf intervention across time. Our work suggests that isolated measurements do not show the complete picture of the modulatory effects of oral bLf in immunological sites as dynamic as the proximal small intestine.


Asunto(s)
Inmunidad Mucosa/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Lactoferrina/administración & dosificación , Ganglios Linfáticos Agregados/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Administración Oral , Animales , Citocinas/metabolismo , Inmunoglobulina A/metabolismo , Inmunoglobulina M/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Intestino Delgado/inmunología , Intestino Delgado/metabolismo , Masculino , Ratones Endogámicos BALB C , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/metabolismo , Fenotipo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismo
7.
Sci Transl Med ; 12(545)2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32461336

RESUMEN

Eosinophilic esophagitis (EoE) is a chronic, food antigen-driven, inflammatory disease of the esophagus and is associated with impaired barrier function. Evidence is emerging that loss of esophageal expression of the serine peptidase inhibitor, kazal type 7 (SPINK7), is an upstream event in EoE pathogenesis. Here, we provide evidence that loss of SPINK7 mediates its pro-EoE effects via kallikrein 5 (KLK5) and its substrate, protease-activated receptor 2 (PAR2). Overexpression of KLK5 in differentiated esophageal epithelial cells recapitulated the effect of SPINK7 gene silencing, including barrier impairment and loss of desmoglein-1 expression. Conversely, KLK5 deficiency attenuated allergen-induced esophageal protease activity, modified commensal microbiome composition, and attenuated eosinophilia in a murine model of EoE. Inhibition of PAR2 blunted the cytokine production associated with loss of SPINK7 in epithelial cells and attenuated the allergen-induced esophageal eosinophilia in vivo. Clinical samples substantiated dysregulated PAR2 expression in the esophagus of patients with EoE, and delivery of the clinically approved drug α1 antitrypsin (A1AT, a protease inhibitor) inhibited experimental EoE. These findings demonstrate a role for the balance between KLK5 and protease inhibitors in the esophagus and highlight EoE as a protease-mediated disease. We suggest that antagonizing KLK5 and/or PAR2 has potential to be therapeutic for EoE.


Asunto(s)
Esofagitis Eosinofílica , Animales , Esofagitis Eosinofílica/tratamiento farmacológico , Células Epiteliales , Humanos , Calicreínas , Ratones , Receptor PAR-2
8.
Vaccines (Basel) ; 7(4)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627457

RESUMEN

Cytomegalovirus (CMV) species have been gaining attention as experimental vaccine vectors inducing cellular immune responses of unparalleled strength and protection. This review outline the strengths and the restrictions of CMV-based vectors, in light of the known aspects of CMV infection, pathogenicity and immunity. We discuss aspects to be considered when optimizing CMV based vaccines, including the innate immune response, the adaptive humoral immunity and the T-cell responses. We also discuss the antigenic epitopes presented by unconventional major histocompatibility complex (MHC) molecules in some CMV delivery systems and considerations about routes for delivery for the induction of systemic or mucosal immune responses. With the first clinical trials initiating, CMV-based vaccine vectors are entering a mature phase of development. This impetus needs to be maintained by scientific advances that feed the progress of this technological platform.

9.
Biomed Res Int ; 2019: 8980506, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31341910

RESUMEN

Immunomodulatory agents have been proposed as therapeutic candidates to improve outcomes in sepsis. Transferon™, a dialyzable leukocyte extract (DLE), has been supported in Mexico as an immunomodulatory adjuvant in anti-infectious therapy. Here we present a retrospective study describing the experience of a referral pediatric intensive care unit (PICU) with Transferon™ in sepsis. We studied clinical and laboratory data from 123 patients with sepsis (15 in the DLE group and 108 in the control group) that were admitted to PICU during the period between January 2010 and December 2016. Transferon™ DLE use was associated with lower C reactive protein (CRP), increase in total lymphocyte counts (TLC), and decrease in total neutrophil count (TNC) 72 hours after Transferon™ DLE administration. The control group did not present any significant difference in CRP values and had lower TLC after 72 hours of admission. There was no difference in PICU length of stay between control and Transferon™ DLE group. Transferon™ DLE administration was associated with a higher survival rate at the end of PICU stay. This study shows a possible immunomodulatory effect of Transferon™ on pediatric sepsis patients.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Sepsis/tratamiento farmacológico , Factor de Transferencia/uso terapéutico , Proteína C-Reactiva/metabolismo , Niño , Femenino , Humanos , Unidades de Cuidado Intensivo Pediátrico , Recuento de Linfocitos , Masculino , México , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Estudios Retrospectivos , Sepsis/metabolismo , Sepsis/mortalidad , Tasa de Supervivencia
10.
Case Reports Immunol ; 2019: 6357256, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31355024

RESUMEN

Hyper-IgE syndrome (HIES) is a rare primary immunodeficiency characterized by elevated levels of immunoglobulin E (IgE), eczematous dermatitis, cold abscesses, and recurrent infections of the lung and skin caused by Staphylococcus aureus. The dominant form is characterized by nonimmunologic features including skeletal, connective tissue, and pulmonary abnormalities in addition to recurrent infections and eczema. Omalizumab is a humanized recombinant monoclonal antibody against IgE. Several studies reported clinical improvement with omalizumab in patients with severe atopic eczema with high serum IgE level. We present the case of a 37-year-old male with HIES and cutaneous manifestations, treated with humanized recombinant monoclonal antibodies efalizumab and omalizumab. After therapy for 4 years, we observed diminished eczema and serum IgE levels.

11.
Sci Transl Med ; 10(444)2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29875205

RESUMEN

Loss of barrier integrity has an important role in eliciting type 2 immune responses, yet the molecular events that initiate and connect this with allergic inflammation remain unclear. We reveal an endogenous, homeostatic mechanism that controls barrier function and inflammatory responses in esophageal allergic inflammation. We show that a serine protease inhibitor, SPINK7 (serine peptidase inhibitor, kazal type 7), is part of the differentiation program of human esophageal epithelium and that SPINK7 depletion occurs in a human allergic, esophageal condition termed eosinophilic esophagitis. Experimental manipulation strategies reducing SPINK7 in an esophageal epithelial progenitor cell line and primary esophageal epithelial cells were sufficient to induce barrier dysfunction and transcriptional changes characterized by loss of cellular differentiation and altered gene expression known to stimulate allergic responses (for example, FLG and SPINK5). Epithelial silencing of SPINK7 promoted production of proinflammatory cytokines including thymic stromal lymphopoietin (TSLP). Loss of SPINK7 increased the activity of urokinase plasminogen-type activator (uPA), which in turn had the capacity to promote uPA receptor-dependent eosinophil activation. Treatment of epithelial cells with the broad-spectrum antiserine protease, α1 antitrypsin, reversed the pathologic features associated with SPINK7 silencing. The relevance of this pathway in vivo was supported by finding genetic epistasis between variants in TSLP and the uPA-encoding gene, PLAU We propose that the endogenous balance between SPINK7 and its target proteases is a key checkpoint in regulating mucosal differentiation, barrier function, and inflammatory responses and that protein replacement with antiproteases may be therapeutic for select allergic diseases.


Asunto(s)
Células Epiteliales/patología , Esófago/patología , Inflamación/patología , Inhibidores de Serinpeptidasas Tipo Kazal/metabolismo , Biomarcadores/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Citocinas/genética , Citocinas/metabolismo , Esofagitis Eosinofílica/genética , Esofagitis Eosinofílica/patología , Eosinófilos/patología , Epistasis Genética , Transición Epitelial-Mesenquimal/genética , Proteínas Filagrina , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-13/metabolismo , Mesodermo/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Dominios Proteicos , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Inhibidor de Serinpeptidasas Tipo Kazal-5/química , Inhibidor de Serinpeptidasas Tipo Kazal-5/genética , Inhibidor de Serinpeptidasas Tipo Kazal-5/metabolismo , Inhibidores de Serinpeptidasas Tipo Kazal/química , Inhibidores de Serinpeptidasas Tipo Kazal/genética , Transcripción Genética , Transcriptoma/genética , Activador de Plasminógeno de Tipo Uroquinasa , Vimentina/metabolismo , Linfopoyetina del Estroma Tímico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...