Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(14): 10014-10022, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557129

RESUMEN

Direct oxidation of methane to methanol was reported to be highly dependent on the transition- or noble-metal-loading catalysts in the past decades. Here, we show that the transition-metal-free aluminosilicate ferrierite (FER) zeolite effectively catalyzed methane and N2O to methanol for the first time. The distorted tetracoordinated Al in the framework and pentacoordinated Al on the extra framework formed during calcination, activation, and reaction processes were confirmed as the potential active centers. The possible reaction pathway similar to the Fe-containing zeolites was advocated based on the reaction results using different oxidants, N2O adsorption FTIR spectra, and 27Al MAS NMR spectra. The stable and efficient methanol production capacity of FER zeolite was ascribed to the two-dimensional straight channels and its distinctive Al distribution of FER zeolite (CP914C) from Zeolyst. The transition-metal-free FER zeolite performed better than the record in the literature and our recent results using transition-metal-containing catalysts in terms of selectivity and formation rate of methanol and stability. This work has great significance and prospects for utilizing CH4 and N2O as resources and will open new avenues for methane oxidation.

2.
ACS Appl Mater Interfaces ; 16(14): 17701-17714, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38546502

RESUMEN

The spatial distribution of framework Al (AlF) has been one of the important factors that affect the catalytic properties of zeolites in diverse chemical reactions; however, the synthesis of high-silica zeolites with special AlF distribution remains a challenge. In this study, we successfully synthesized high-silica ZSM-5 zeolites with a unique AlF distribution by employing pentaerythritol (PET) as an additive in the presence of a few tetrapropylammonium hydroxide (TPAOH). The results demonstrated that the introduction of PET led to a higher proportion of Al atoms located at the sinusoidal and/or straight channels. It was observed that the addition of PET prevented the interaction between TPA+ and tetrahedral [AlO4]- during the crystallization process, resulting in enhanced availability of TPA species in the form of ion-paired TPA+. This effect leads to AlF atoms dominantly distributed away from the intersection and located in narrow channels, where acidic sites more effectively inhibit hydrogen transfer and coke formation. In the reaction of dimethyl ether (DME) to olefins, the catalyst with a unique Al distribution exhibited a significant prolonged catalytic lifetime, surpassing traditional TPA-ZSM-5 by more than 2-fold and maintaining DME conversion above 90% for a maximum of 148 h. The results of multiple pulse experiments also showed that these PET-assisted ZSM-5 zeolites significantly enhanced the selectivity of propene and butene. This approach provides an effective strategy to regulate AlF distribution in high-silica ZSM-5 catalysts with the assistance of neutral alcohol. It holds great potential for application in the synthesis of other high-silica zeolites, thereby enriching the diversity of zeolite catalysis.

3.
Nat Commun ; 15(1): 2718, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548724

RESUMEN

Unraveling the effect of spatially separated bifunctional sites on catalytic reactions is significant yet challenging. In this report, we investigate the role of spatial separation on the oxidation of methane in a series of Cu-exchanged aluminosilicate zeolites. Regulation of the bifunctional sites is done either through studying a physical mixture of Cu-exchanged zeolites and acidic zeolites or by systematically varying the Cu and acid density within a family of zeolite materials. We show that separated Cu and acid sites are beneficial for the formation of hydrocarbons while high-density Cu sites, which are closer together, facilitate the production of CO2. By contrast, a balance of the spatial separation of Cu and acid sites shows more favorable formation of methanol. This work will further guide approaches to methane oxidation to methanol and open an avenue for promoting hydrocarbon synthesis using methanol as an intermediate.

4.
ACS Omega ; 8(44): 41809-41815, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37970046

RESUMEN

The development of a photocatalyst capable of evolving H2 from water under visible light is important. Here, the photocatalytic activity of N/F-codoped rutile TiO2 (TiO2:N,F) for H2 evolution was examined with respect to metal cocatalyst loading and irradiation conditions. Among the metal species examined, Pd was the best-performing cocatalyst for TiO2:N,F under UV-vis irradiation (λ > 350 nm), producing H2 from an aqueous methanol solution. The H2 evolution activity was also dependent on the state of the loaded Pd species on the TiO2:N,F, which varied depending on the preparation conditions. Pd/TiO2:N,F prepared by an impregnation-H2 reduction method, showed the highest performance. However, the activity of the optimized Pd/TiO2:N,F toward H2 evolution from an aqueous methanol solution was negligibly small under visible-light irradiation (λ > 400 nm), although the use of an ethylenediaminetetraacetic acid disodium salt as an electron donor resulted in observable H2 evolution. Transient absorption spectroscopy revealed that although a relatively large population of reactive electrons was generated in the TiO2:N,F under 355 nm UV-pulse photoexcitation, the density of reactive electrons generated under 480 nm visible light was lower. This wavelength-dependent behavior in photogenerated charge carrier dynamics could explain the different photocatalytic activities of the TiO2:N,F catalysts under different irradiation conditions.

5.
Molecules ; 28(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37630270

RESUMEN

(-)-Epigallocatechin gallate (EGCG) is a bioactive component of green tea that provides many health benefits. However, excessive intake of green tea may cause adverse effects of caffeine (CAF) since green tea (30-50 mg) has half the CAF content of coffee (80-100 mg). In this work, for enhancing the health benefits of green tea, natural rubber/hexagonal mesoporous silica (NR/HMS) nanocomposites with tunable textural properties were synthesized using different amine template sizes and applied as selective adsorbents to separate EGCG and CAF from green tea. The resulting adsorbents exhibited a wormhole-like silica framework, high specific surface area (528-578 m2 g-1), large pore volume (0.76-1.45 cm3 g-1), and hydrophobicity. The NR/HMS materials adsorbed EGCG more than CAF; the selectivity coefficient of EGCG adsorption was 3.6 times that of CAF adsorption. The EGCG adsorption capacity of the NR/HMS series was correlated with their pore size and surface hydrophobicity. Adsorption behavior was well described by a pseudo-second-order kinetic model, indicating that adsorption involved H-bonding interactions between the silanol groups of the mesoporous silica surfaces and the hydroxyl groups of EGCG and the carbonyl group of CAF. As for desorption, EGCG was more easily removed than CAF from the NR/HMS surface using an aqueous solution of ethanol. Moreover, the NR/HMS materials could be reused for EGCG adsorption at least three times. The results suggest the potential use of NR/HMS nanocomposites as selective adsorbents for the enrichment of EGCG in green tea. In addition, it could be applied as an adsorbent in the filter to reduce the CAF content in green tea by up to 81.92%.


Asunto(s)
Cafeína , Nanocompuestos , , Goma , Adsorción , Dióxido de Silicio
6.
J Am Chem Soc ; 145(31): 17284-17291, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37489934

RESUMEN

Germanosilicate zeolites with various structures have been extensively synthesized, but the syntheses of corresponding zeolite structures in the absence of germanium species remain a challenge. One such example is an ITR zeolite structure, which is a twin of the ITH zeolite structure. Through the modification of a classic organic template for synthesizing ITH zeolites and thus designing a new organic template with high compatibility to ITR zeolite assisted by theoretical simulation, we, for the first time, show the Ge-free synthesis of an ITR structure including pure silica, aluminosilicate, and borosilicate ITR zeolites. These materials have high crystallinity, corresponding to an ITR content of more than 95%. In the methanol-to-propylene (MTP) reaction, the obtained aluminosilicate ITR zeolite exhibits excellent propylene selectivity and a long lifetime compared with conventional aluminosilicate ZSM-5 zeolite. The strategy for the design of organic templates might offer a new opportunity for rational syntheses of novel zeolites and, thus, the development of highly efficient zeolite catalysts in the future.

7.
Chemistry ; 28(72): e202202825, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36129172

RESUMEN

Development of porous materials capable of capturing volatile organic compounds (VOCs), such as benzene and its derivatives, with high efficiency, selectivity, and reusability is highly demanded. Here we report unusual vapor adsorption behavior toward VOCs by a new porous solid, composed of a polyaromatic capsule bearing a spherical nanocavity with subnano-sized windows. Without prior crystallization and high-temperature vacuum drying, the porous polyaromatic solid exhibits the following five features: vapor adsorption of benzene over cyclohexane with 90 % selectivity, high affinity toward o-xylene over benzene and toluene with >80 % selectivity, ortho-selective adsorption ability (>50 %) from mixed xylene isomers, tight VOCs storage even under high temperature and vacuum conditions, and at least 5 times reusability for xylene adsorption. The observed adsorption abilities are accomplished at ambient temperature and pressure within 1 h, which has not been demonstrated by organic/inorganic porous materials reported previously.

8.
Chem Commun (Camb) ; 58(82): 11583-11586, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36168921

RESUMEN

High-silica CHA-type aluminosilicates (Si/Al molar ratio >100) were synthesized hydrothermally in the absence of fluoride media, where the seed-assisted aging treatment played an important role on the crystallization. These aluminosilicates showed a long catalytic lifetime with high selectivity toward lower olefins in the methanol-to-olefins reaction.

9.
Sci Adv ; 8(32): eadc9115, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35947708

RESUMEN

While dye-sensitized metal oxides are good candidates as H2 evolution photocatalysts for solar-driven Z-scheme water splitting, their solar-to-hydrogen (STH) energy conversion efficiencies remain low because of uncontrolled charge recombination reactions. Here, we show that modification of Ru dye-sensitized, Pt-intercalated HCa2Nb3O10 nanosheets (Ru/Pt/HCa2Nb3O10) with both amorphous Al2O3 and poly(styrenesulfonate) (PSS) improves the STH efficiency of Z-scheme overall water splitting by a factor of ~100, when the nanosheets are used in combination with a WO3-based O2 evolution photocatalyst and an I3-/I- redox mediator, relative to an analogous system that uses unmodified Ru/Pt/HCa2Nb3O10. By using the optimized photocatalyst, PSS/Ru/Al2O3/Pt/HCa2Nb3O10, a maximum STH of 0.12% and an apparent quantum yield of 4.1% at 420 nm were obtained, by far the highest among dye-sensitized water splitting systems and comparable to conventional semiconductor-based suspended particulate photocatalyst systems.

10.
Inorg Chem ; 61(34): 13481-13496, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-35976816

RESUMEN

The construction of aluminosilicates from versatile molecular precursors (MPs) represents a promising alternative strategy to conventional processes based on monomeric molecular or polymeric Al and Si sources. However, the use of MPs often suffers from drawbacks such as the decomposition of the core structures in the presence of solvents, acids, or bases. In this work, we demonstrate a simple thermal synthesis of porous aluminosilicates from single-source spiro-7-type MPs that consist of a tetrahedral Al atom and six Si atoms functionalized with 12 phenyl (Ph) groups, (C+)[Al{Ph2Si(OSiPh2O)2}2]- (C+[AlSi6]-; C+ = pyridinium cation (PyH+), Na+, K+, Rb+, or Cs+), without using a solvent or activator. Microporous aluminosilicates synthesized via the thermal treatment of C+[AlSi6]- under a 79% N2 + 21% O2 atmosphere exhibited extremely low carbon contents (0.10-1.28%), together with Si/Al ratios of 3.9-6.7 ± 0.2 and surface areas of 103.1-246.3 m2/g. The solid-state 27Al and 29Si MAS NMR spectra suggest that the obtained aluminosilicates with alkali cations retain a tetrahedral Al site derived from the spiro-7-type core structure. After a proton-exchange reaction, the aluminosilicates showed almost 1.5 times higher reactivity in the catalytic ring-opening of styrene oxide than the aluminosilicate before proton exchange due to the catalytically active OH site being predominantly bridged by tetrahedral Al and Si atoms. These results suggest that the present MP strategy is a promising method for the introduction of key structures into active inorganic materials.

11.
Angew Chem Int Ed Engl ; 61(26): e202204948, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35560974

RESUMEN

Photocatalytic conversion of CO2 into transportable fuels such as formic acid (HCOOH) under sunlight is an attractive solution to the shortage of energy and carbon resources as well as to the increase in Earth's atmospheric CO2 concentration. The use of abundant elements as the components of a photocatalytic CO2 reduction system is important, and a solid catalyst that is active, recyclable, nontoxic, and inexpensive is strongly demanded. Here, we show that a widespread soil mineral, alpha-iron(III) oxyhydroxide (α-FeOOH; goethite), loaded onto an Al2 O3 support, functions as a recyclable catalyst for a photocatalytic CO2 reduction system under visible light (λ>400 nm) in the presence of a RuII photosensitizer and an electron donor. This system gave HCOOH as the main product with 80-90 % selectivity and an apparent quantum yield of 4.3 % at 460 nm, as confirmed by isotope tracer experiments with 13 CO2 . The present work shows that the use of a proper support material is another method of catalyst activation toward the selective reduction of CO2 .

12.
Chemistry ; 28(43): e202200875, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35622449

RESUMEN

Pb2 Ti2 O5.4 F1.2 modified with various metal cocatalysts was studied as a photocatalyst for visible-light H2 evolution. Although unmodified Pb2 Ti2 O5.4 F1.2 showed negligible activity, modification of its surface with Rh led to the best observed promotional effect among the Pb2 Ti2 O5.4 F1.2 samples modified with a single metal cocatalyst. The H2 evolution activity was further enhanced by coloading with Pd; the Rh-Pd/Pb2 Ti2 O5.4 F1.2 photocatalyst showed 3.2 times greater activity than the previously reported Pt/Pb2 Ti2 O5.4 F1.2 . X-ray absorption fine-structure spectroscopy, photoelectrochemical, and transient absorption spectroscopy measurements indicated that the coloaded Rh and Pd species, which were partially alloyed on the Pb2 Ti2 O5.4 F1.2 surface, improved the electron-capturing ability, thereby explaining the high activity of the coloaded Rh-Pd/Pb2 Ti2 O5.4 F1.2 catalyst toward H2 evolution.

13.
ACS Appl Mater Interfaces ; 14(17): 19756-19765, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35451831

RESUMEN

Wurtzite-structured Ga1-xZnx(N,O,F) was successfully synthesized by nitridation of mixtures of a Ga-containing oxide and ZnF2. The addition of ZnF2 lowered the nitridation temperature for the synthesis of Ga1-xZnx(N,O,F) to 823 K, even when bulk ZnGa2O4 was used as a paired precursor. This lowering of the synthesis temperature was ascribed to the enhancement of nitridation through the addition of fluorine. The low-temperature nitridation achieved by the addition of fluorine suppressed the volatilization of Zn compared with that during the synthesis of a GaN:ZnO solid solution by a conventional high-temperature ammonolysis reaction. The higher concentration of Zn, as well as the higher N concentration in Ga1-xZnx(N,O,F) achieved through the fluorine-assisted nitridation, led to a redshift of the absorption edge of Ga1-xZnx(N,O,F) to 560 nm compared with that of GaN:ZnO synthesized by the conventional ammonolysis reaction. The visible-light absorption of Ga1-xZnx(N,O,F) can be used to drive the photoelectrochemical oxidation of water.

14.
RSC Adv ; 12(19): 11877-11884, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35481092

RESUMEN

The monoallylation of aniline to give N-allyl aniline is a fundamental transformation process that results in various kinds of valuable building block allyl compounds, which can be used in the production of pharmaceuticals and electronic materials. For decades, sustainable syntheses have been gaining much attention, and the employment of allyl alcohol as an allyl source can follow the sustainability due to the formation of only water as a coproduct through dehydrative monoallylation. Although the use of homogeneous metal complex catalysts is a straightforward choice for the acceleration of dehydrative monoallylation, the use of soluble catalysts tends to contaminate products. We herein present a 10 wt% WO3/ZrO2 catalyzed monoallylation process of aniline to give N-allyl anilines in good yields with excellent selectivity, which enables the continuous selective flow syntheses of N-allyl aniline with 97-99% selectivity. The performed detailed study about the catalytic mechanism suggests that the dispersed WO3 with the preservation of the W(vi) oxidation state of 10 wt% WO3/ZrO2 with appropriate acidity and basicity is crucial for the monoallylation. The inhibition of the over allylation of the N-allyl anilines is explained by the unwilling contact of the N-allyl aniline with the active sites of WO3/ZrO2 due to the steric hindrance.

15.
Nanomaterials (Basel) ; 12(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35159678

RESUMEN

The photocatalytic conversion of CO2 to fuels using solar energy presents meaningful potential in the mitigation of global warming, solar energy conversion, and fuel production. Photothermal catalysis is one promising approach to convert chemically inert CO2 into value-added chemicals. Herein, we report the selective hydrogenation of CO2 to ethanol by Pd2Cu alloy dispersed TiO2 (P25) photocatalyst. Under UV-Vis irradiation, the Pd2Cu/P25 showed an efficient CO2 reduction photothermally at 150 °C with an ethanol production rate of 4.1 mmol g-1 h-1. Operando diffuse reflectance infrared Fourier transform (DRIFT) absorption studies were used to trace the reactive intermediates involved in CO2 hydrogenation in detail. Overall, the Cu provides the active sites for CO2 adsorption and Pd involves the oxidation of H2 molecule generated from P25 and C-C bond formation.

16.
Phys Chem Chem Phys ; 24(7): 4358-4365, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35112119

RESUMEN

MSE-type zeolites synthesized by different organic structure-directing agents (OSDAs), UZM-35 and MCM-68, were prepared. The location of Brønsted acid sites derived from the framework Al atoms and acidic properties were investigated based on 27Al MQMAS NMR and in situ IR techniques combined with the evaluation of the catalytic activity. We have successfully found a significant difference in the location of Brønsted acid sites in the MSE-type framework; 61 and 33% of acid sites were located at the 12-ring channel for MCM-68 and UZM-35, respectively. The differences in the location of the acid sites yielded their unique catalytic activities for the hydrocarbon cracking reactions, indicating that a well-chosen type of OSDAs for the synthesis is one of the possibilities for controlling the distribution of the framework Al atoms in the MSE-type framework.

17.
Chem Commun (Camb) ; 57(98): 13301-13304, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34812445

RESUMEN

The paired Al species pre-formed in Al-rich amorphous aluminosilicates were transcribed into high-silica CHA-type zeolite frameworks under hydrothermal conditions, which offers a new approach to creating paired Al sites in zeolite frameworks. This Al-pair-rich CHA exhibited a higher Sr2+ uptake than the control CHA zeolite synthesized by the conventional procedure.

18.
ACS Omega ; 6(8): 5176-5182, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33681559

RESUMEN

Mordenite (MOR)-type zeolites with a Si/Al molar ratio of up to 13 with crystallite sizes of ca. 60 nm were successfully synthesized from Al-rich aluminosilicates with a Si/Al ratio of 2 and additional SiO2 under seed-assisted hydrothermal conditions for 6 h or longer without any organic structure-directing agents (OSDAs). In stark contrast, under the same hydrothermal conditions for 6 h, control experiments using starting reagent(s), such as Al-poor aluminosilicate, pure SiO2, tetraethyl orthosilicate, and Al(NO3)3, all of which are typically employed for zeolite synthesis, failed to yield MOR-type zeolites. The penta-coordinated Al species, which are present in Al-rich aluminosilicates and are more reactive than the tetra- and hexa-coordinated Al species typically found in alumina and Al-poor aluminosilicates, played a decisive role in the OSDA-free synthesis of MOR-type zeolites.

19.
Sci Rep ; 10(1): 12977, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737440

RESUMEN

This study is the first report on the preparation of mesoporous carbon/silica (MCS) nanocomposites with tunable mesoporosity and hydrophobicity using natural rubber (NR) as a renewable and cheap carbon source. A series of mesoporous nanocomposites based on NR and hexagonal mesoporous silica (HMS) were prepared via an in situ sol-gel process and used as precursors; then, they were converted into MCS materials by controlled carbonization. The NR/HMS precursors exhibited a high dispersion of rubber phase incorporated into the mesostructured silica framework as confirmed by small-angle X-ray scattering and high-resolution transmission electron microscopy. An increase in the carbonization temperature up to 700 °C resulted in MCS nanocomposites with a well-ordered mesostructure and uniform framework-confined wormhole-like channels. The NR/HMS nanocomposites possessed high specific surface area (500-675 m2 g-1) and large pore volume (1.14-1.44 cm3 g-1). The carbon content of MCS (3.0-16.1 wt%) was increased with an increase in the H2SO4 concentration. Raman spectroscopy and X-ray photoelectron spectroscopy revealed the high dispersion of graphene oxide-like carbonaceous moieties in MCS materials; the type and amount of oxygen-containing groups in obtained MCS materials were determined by H2SO4 concentration. The enhanced hydrophobicity of MCS nanocomposites was related to the carbon content and the depletion of surface silanol groups, as confirmed by the water sorption measurement. The study on the controlled release of diclofenac in simulated gastrointestinal environment suggests a potential application of MCS materials as drug carriers.

20.
Angew Chem Int Ed Engl ; 59(45): 19934-19939, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-32720429

RESUMEN

Unit-cell-thin zeolitic nanosheets have emerged as fascinating materials for catalysis and separation. The controllability of nanosheet stacking is extremely challenging in the chemistry of two-dimensional zeolitic materials. To date, the organization of zeolitic nanosheets in hydrothermal synthesis has been limited by the lack of tunable control over the guest-host interactions between organic structure-directing agents (OSDAs) and zeolitic nanosheets. A direct synthetic methodology is reported that enables systematic manipulation of the aluminosilicate MWW-type nanosheet stacking. Variable control of guest-host interactions is rationally achieved by synergistically altering the charge density of OSDAs and synthetic silica-to-alumina composition. These finely controlled interactions allow successful preparation of a series of three-dimensional (3D) zeolites, with MWW-layer stacking in wide ranges from variably disorder to fully ordered, leading to tunable catalytic activity in the cracking reaction. These results highlight unprecedented opportunities to modulate zeolitic nanosheets arrangement in 3D zeolites whose structure can be tailored for catalysis and separation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...