Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 14(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39056605

RESUMEN

In this work, a new surface plasmon resonance (SPR) sensor based on sulphur-doped titanium dioxide (S-TiO2) nanostructures and molecularly imprinted polymer (MIP) was presented for thiram (THI) determination in milk samples. Firstly, the S-TiO2 nanomaterial with a high product yield was prepared by using a facile sol-gel hydrolysis technique with a high product yield. After that, UV polymerization was carried out for the preparation of the THI-imprinted SPR chip based on S-TiO2 using a mixture including ethylene glycol dimethacrylate (EGDMA) as the cross-linker, N,N'-azobisisobutyronitrile (AIBN) as the initiator, and methacryloylamidoglutamicacid (MAGA) as the monomer. The reliability of the sensor preparation procedure has been successfully proven by characterization studies of the prepared nanomaterials and SPR chip surfaces through spectroscopic, microscopic, and electrochemical methods. As a result, the prepared SPR sensor showed linearity in the range of 1.0 × 10-9-1.0 × 10-7 M with a detection limit (LOD) of 3.3 × 10-10 M in the real samples, and a sensor technique for THI determination with high sensitivity, repeatability, and selectivity can be included in the literature.


Asunto(s)
Leche , Polímeros Impresos Molecularmente , Azufre , Resonancia por Plasmón de Superficie , Tiram , Titanio , Titanio/química , Leche/química , Azufre/química , Polímeros Impresos Molecularmente/química , Animales , Tiram/análisis , Límite de Detección , Impresión Molecular , Polímeros/química
2.
Mikrochim Acta ; 191(5): 230, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565804

RESUMEN

A novel molecularly imprinted electrochemical sensor is presented based on one-dimensional ultrathin manganese oxide nanowires/two-dimensional molybdenum titanium carbide MXene (MnO2NWs@Mo2TiC2 MXene) for fenitrothion (FEN) determination. After the synthesis of MnO2NWs@Mo2TiC2 MXene ionic nanocomposite was successfully completed with a facile hydrothermal and the pillaring methods, a new type molecular imprinted electrochemical sensor based on MnO2NWs@Mo2TiC2 MXene was constructed with cyclic voltammetry (CV) polymerization including pyrrole monomer and FEN target molecule. After the characterization studies including spectroscopic, electrochemical and microscopic methods, the analytical applications of the prepared sensor were performed. A linearity of 1.0×10-9-2.0×10-8 mol L-1 was obtained and the values of the quantification limit (LOQ) and the detection limit (LOD) were 1.0×10-9 mol L-1 and 3.0×10-10 mol L-1, respectively. The studies of selectivity, stability and reproducibility of the constructed sensor based on MnO2NWs@Mo2TiC2 nanocomposite and molecularly imprinting polymer (MIP) were carried out in detail. Finally, the developed sensor was applied to white flour samples with the values close to 100%.

3.
Foods ; 13(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38472923

RESUMEN

Dimethoate (DIM) as an organophosphorus pesticide is widely utilized especially in the cultivation of vegetables and fruits due to its killing effect on harmful insects. However, unconscious use of DIM in large amounts can also cause serious health problems. For these reasons, rapid and reliable detection of DIM from food samples is significant. In this study, a novel quartz crystal microbalance (QCM) sensor based on erbium molybdate incorporating sulfur-doped graphitic carbon nitride (EM/S-g-C3N4) and a molecularly imprinting polymer (MIP) was designed for DIM detection in apple juice samples. Firstly, an EM/S-g-C3N4 nanocomposite with high purity was prepared under hydrothermal conditions at high temperatures over a long period of time. After the modification of the EM/S-g-C3N4 nanocomposite on a QCM chip, the polymerization solution including N,N'-azobisisobutyronitrile (AIBN) as an initiator, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, methacryloylamidoglutamic acid (MAGA) as a monomer, and DIM as an analyte was prepared. Then, the polymerization solution was dropped on an EM/S-g-C3N4 nanocomposite modified QCM chip and an ultraviolet polymerization process was applied for the formation of the DIM-imprinted polymers on the EM/S-g-C3N4 nanocomposite modified QCM chip. After the polymerization treatment, some characterization studies, including electrochemical, microscopic, and spectroscopic methods, were performed to illuminate the surface properties of the nanocomposite and the prepared QCM sensor. The values of the limit of quantification (LOQ) and the detection limit (LOD) of the prepared QCM sensor were as 1.0 × 10-9 M and 3.3 × 10-10 M, respectively. In addition, high selectivity, stability, reproducibility, and repeatability of the developed sensor was observed, providing highly reliable analysis results. Finally, thanks to the prepared sensor, it may be possible to detect pesticides from different food and environmental samples in the future.

4.
Anal Methods ; 16(8): 1215-1224, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38314668

RESUMEN

Nivalenol as a mycotoxin pesticide is toxic to humans and animals and causes major health problems including hemorrhage, anemia, and vomiting. Thus, the need for fast and reliable analytical systems in terms of the management of health risks resulting from nivalenol exposure has increased in recent years. The aim of this study involved a novel molecularly imprinted quartz crystal microbalance sensor preparation based on sulphur-incorporating cobalt ferrite for nivalenol detection in rice samples. For this aim, cobalt ferrite and sulfur incorporated cobalt ferrite were successfully synthesized by sol-gel and calcination methods, respectively. Then, nivalenol imprinted quartz crystal microbalance chips based on cobalt ferrite and sulfur incorporated cobalt ferrite were prepared by an ultraviolet polymerization technique including N,N'-azobisisobutyronitrile as the initiator, ethylene glycol dimethacrylate as the cross-linker, methacryloylamidoglutamic acid as the monomer, and nivalenol as the analyte. After some spectroscopic, electrochemical and microscopic characterization studies, the developed sensor was applied to rice grain samples for the determination of nivalenol. The linearity of the prepared sensor was observed to be 1.0-10.0 ng L-1 and the limit of quantification and detection limit were found to be 1.0 and 0.33 ng L-1, respectively. Finally, the high selectivity, repeatability, and stability of the prepared sensor based on sulphur-incorporating cobalt ferrite and a molecularly imprinted polymer can ensure safe food consumption worldwide.


Asunto(s)
Cobalto , Compuestos Férricos , Impresión Molecular , Oryza , Tricotecenos , Humanos , Animales , Tecnicas de Microbalanza del Cristal de Cuarzo/métodos , Impresión Molecular/métodos , Límite de Detección , Polímeros/química , Azufre
5.
Biosensors (Basel) ; 13(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37622846

RESUMEN

A novel electrochemical sensor based on MnCO3 nanostructures incorporated into carbon fibers (MnCO3NS/CF), including a molecularly imprinting polymer (MIP), was developed for the determination of Ochratoxin A (OTA). In this study, a sensitive and selective sensor design for OTA detection was successfully performed by utilizing the selectivity and catalysis properties of MIP and the synthesized MnCO3NS/CF material at the same time. MnCO3 nanostructures incorporated into carbon fibers were first characterized by using various analytical techniques. The sensor revealed a linearity towards OTA in the range of 1.0 × 10-11-1.0 × 10-9 mol L-1 with a detection limit (LOD) of 2.0 × 10-12 mol L-1. The improved electrochemical signal strategy was achieved by high electrical conductivity on the electrode surface, providing fast electron transportation. In particular, the analysis process could be finished in less than 5.0 min without complex and expensive equipment. Lastly, the molecular imprinted electrochemical sensor also revealed superior stability, repeatability and reproducibility.


Asunto(s)
Malus , Nanoestructuras , Fibra de Carbono , Polímeros , Reproducibilidad de los Resultados
6.
Analyst ; 148(16): 3827-3834, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37432049

RESUMEN

A novel electrochemical detection method based on a nickel ferrite@graphene (NiFe2O4@Gr) nanocomposite-containing molecularly imprinted polymer (MIP) was developed for the sensitive determination of butylated hydroxyanisole (BHA). After successful completion of the nanocomposite production under hydrothermal conditions, the NiFe2O4@Gr nanocomposite and a novel molecularly imprinted sensor based on the NiFe2O4@Gr nanocomposite were characterized using microscopic, spectroscopic and electrochemical techniques. According to the characterization results, the synthesis of the core-shell type NiFe2O4@Gr nanocomposite with high purity and efficiency has been proved to be successful. After successful modification of a cleaned glassy carbon electrode (GCE) with the NiFe2O4@Gr nanocomposite, analytical applications were started with the prepared BHA printed GCE. This novel molecularly imprinted electrochemical sensor for BPA detection demonstrated a linearity of 1.0 × 10-11-1.0 × 10-9 M and a low detection limit (LOD, 3.0 × 10-12 M). In addition, the BHA imprinted polymer based on the NiFe2O4@Gr nanocomposite also exhibited excellent selectivity, stability, reproducibility and reusability performances in flour analysis.

7.
Biosensors (Basel) ; 13(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37504124

RESUMEN

A molecular imprinted electrochemical sensor based on boron-functionalized graphitic carbon nitride (B-g-C3N4) and graphene quantum dots (GQDs) was presented for selective determination of bisphenol A (BPA). In particular, by combining the selectivity and high stability properties, which are the most important advantages of molecular imprinted polymers, and the highly sensitive properties of GQDs/B-g-C3N4 nanocomposite, a highly selective and sensitive analytical method was developed for BPA analysis. Firstly, GQDs/B-g-C3N4 nanocomposite was characterized by using microscopic, spectroscopic, and electrochemical techniques. This novel molecular imprinted electrochemical sensor for BPA detection demonstrated a linearity of 1.0 × 10-11-1.0 × 10-9 M and a low detection limit (LOD, 3.0 × 10-12 M). BPA-imprinted polymer on GQDs/B-g-C3N4 nanocomposite also showed good stability, repeatability and selectivity in food samples.


Asunto(s)
Técnicas Biosensibles , Grafito , Impresión Molecular , Puntos Cuánticos , Grafito/química , Puntos Cuánticos/química , Boro , Impresión Molecular/métodos , Técnicas Biosensibles/métodos , Límite de Detección , Polímeros/química , Técnicas Electroquímicas/métodos
8.
Mikrochim Acta ; 190(7): 262, 2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37329340

RESUMEN

Zearalenone (ZEN) is a mycotoxin that has a carcinogenic effect and is often found at a high rate in frequently consumed foods. In this study, a characteristic molecular imprinted quartz crystal microbalance (QCM) sensor based on molybdenum disulfide nanoparticle (MoS2NPs)-multiwalled carbon nanotube (MWCNT) nanocomposite (MoS2NPs-MWCNTs) is presented for selective determination of ZEA in rice samples. Firstly, molybdenum disulfide nanoparticle (MoS2NP)-multiwalled carbon nanotube nanocomposites were characterized by using microscopic, spectroscopic, and electrochemical techniques. Then, ZEA-imprinted QCM chip was prepared in the presence of methacryloylamidoglutamicacid (MAGA) as monomer, N,N'-azobisisobutyronitrile (AIBN) as initiator, and ZEA as target molecule by using UV polymerization. The sensor revealed a linearity toward ZEA in the range 1.0-10.0 ng L-1 with a detection limit (LOD) of 0.30 ng L-1. The high repeatability, reusability, selectivity, and stability of the developed sensor enable reliable ZEA detection in rice samples.


Asunto(s)
Impresión Molecular , Nanocompuestos , Nanotubos de Carbono , Zearalenona , Tecnicas de Microbalanza del Cristal de Cuarzo/métodos , Impresión Molecular/métodos , Límite de Detección
9.
Anal Methods ; 15(15): 1932-1938, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37013684

RESUMEN

5-Hydroxymethyl furfural (HMF) is an intermediate produced by dehydrating sugars, such as fructose, sucrose, and glucose, in an acidic medium or during the Maillard reaction. It also occurs due to the storage of sugary foods at inappropriate temperatures. In addition, HMF is seen as a quality criterion in products. In this study, a novel molecularly imprinted electrochemical sensor based on graphene quantum dots incorporated NiAl2O4 (GQDs-NiAl2O4) nanocomposite was presented for the selective determination of HMF in coffee samples. Various microscopic, spectroscopic, and electrochemical methods were carried out for the structural characterizations of GQDs-NiAl2O4 nanocomposite. The molecularly imprinted sensor was prepared by multi-scanning using cyclic voltammetry (CV) in the presence of 100.0 mM pyrrole monomer and 25.0 mM HMF. After method optimization, the sensor revealed linearity towards HMF in the range of 1.0-10.0 ng L-1 with a detection limit (LOD) of 0.30 ng L-1. The developed MIP sensor's high repeatability, selectivity, stability, and fast response ability can provide reliable HMF detection in beverages, such as coffee, which is heavily consumed.


Asunto(s)
Grafito , Impresión Molecular , Nanocompuestos , Puntos Cuánticos , Café , Grafito/química , Impresión Molecular/métodos , Nanocompuestos/química , Puntos Cuánticos/química , Compuestos de Aluminio/química
11.
Micromachines (Basel) ; 15(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276834

RESUMEN

This research attempt involved the development and utilization of a newly designed surface plasmon resonance (SPR) sensor which incorporated sulfur-doped graphitic carbon nitride (S-g-C3N4) as the molecular imprinting material. The primary objective was to employ this sensor for the quantitative analysis of Fenpicoxamid (FEN) in rice samples. The synthesis of S-g-C3N4 with excellent purity was achieved using the thermal poly-condensation approach, which adheres to the principles of green chemistry. Afterwards, UV polymerization was utilized to fabricate a surface plasmon resonance (SPR) chip imprinted with FEN, employing S-g-C3N4 as the substrate material. This process involved the inclusion of N,N'-azobisisobutyronitrile (AIBN) as the initiator, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, methacryloylamidoglutamic acid (MAGA) as the monomer, and FEN as the analyte. After successful structural analysis investigations on a surface plasmon resonance (SPR) chip utilizing S-g-C3N4, which was imprinted with FEN, a comprehensive investigation was conducted using spectroscopic, microscopic, and electrochemical techniques. Subsequently, the kinetic analysis applications, namely the determination of the limit of quantification (LOQ) and the limit of detection (LOD), were carried out. For analytical results, the linearity of the FEN-imprinted SPR chip based on S-g-C3N4 was determined as 1.0-10.0 ng L-1 FEN, and LOQ and LOD values were obtained as 1.0 ng L-1 and 0.30 ng L-1, respectively. Finally, the prepared SPR sensor's high selectivity, repeatability, reproducibility, and stability will ensure safe food consumption worldwide.

13.
ACS Omega ; 7(30): 26687-26700, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35936436

RESUMEN

Magnesium and its alloys have attracted attention for biomedical implant materials in dental and orthopedic applications because of their biodegradability and similar properties to human bones. The very high rate of degradation in the physiological systems is, however, a major setback to their utilization. Chemical modification is one of the approaches adopted to enhance the corrosion resistance property of Mg and its alloys. In this work, NaOH and H2O2 were used as a pretreatment procedure to improve the corrosion resistance of the AZ31 Mg alloy in simulated body fluid (SBF). Advanced techniques such as dynamic electrochemical impedance spectroscopy (dynamic-EIS), atomic force microscopy, and optical profilometry were used in addition to the classical mass loss, hydrogen evolution, EIS, and polarization techniques to study the corrosion resistance property of the alloy in SBF for 30 h. Results obtained show that the surface treatment significantly enhanced the corrosion resistance property of the alloy. From dynamic-EIS at 30 h, the charge transfer resistance of the untreated AZ31 Mg alloy is 432.6 Ω cm2, whereas 822.7 and 2617.3 Ω cm2 are recorded for NaOH- and H2O2-treated surfaces, respectively. H2O2 is a better treatment reagent than NaOH. The mechanism of corrosion of both untreated and treated samples in the studied corrosive medium has been discussed.

14.
Mikrochim Acta ; 189(6): 242, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654985

RESUMEN

The early diagnosis of major diseases such as cancer is typically a major issue for humanity. Human α-fetoprotein (AFP) as a sialylated glycoprotein is of approximately 68 kD molecular weight and is considered to be a key biomarker, and an increase in its level indicates the presence of liver, testicular, or gastric cancer. In this study, an electrochemical AFP immunosensor based on Fe3O4NPs@covalent organic framework decorated gold nanoparticles (Fe3O4 NPs@COF/AuNPs) for the electrode platform and double-coated magnetic nanoparticles (MNPs) based on SiO2@TiO2 (MNPs@SiO2@TiO2) nanocomposites for the signal amplification was fabricated. The immobilization of anti-AFP capture antibody was successfully performed on Fe3O4 NPs@COF/AuNPs modified electrode surface by amino-gold affinity, while the conjugation of anti-AFP secondary antibody on MNPs@SiO2@TiO2 was achieved by the electrostatic/ionic interactions. Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) analysis, cyclic voltammetry (CV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS) techniques were used to characterize the nanostructures in terms of physical and electrochemical features. The limit of detection (LOD) was 3.30 fg mL-1. The findings revealed that the proposed electrochemical AFP immunosensor can be effectively used to diagnose cancer.


Asunto(s)
Técnicas Biosensibles , Nanopartículas de Magnetita , Estructuras Metalorgánicas , Técnicas Biosensibles/métodos , Oro/química , Humanos , Inmunoensayo , Nanopartículas de Magnetita/química , Dióxido de Silicio , Titanio , alfa-Fetoproteínas/análisis
15.
Chemosphere ; 301: 134766, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35490760

RESUMEN

Carbendazim (CAR) as a fungicide is utilized for fruits and vegetables to provide diseases' control and the degradation of carbendazim having benzimidazole ring is slow. Herein, a molecularly imprinted electrochemical sensor based on CdMoO4/g-C3N4 nanocomposite was prepared for CAR determination in fruit juice samples. Firstly, CdMoO4/g-C3N4 nanocomposite with high yield was fabricated via one-pot in-situ hydrothermal approach including environmentally friendly method. Formation of CAR imprinted polymers was performed on CdMoO4/g-C3N4 nanocomposite modified glassy carbon electrode (GCE) in presence of CAR as template and pyrrole (Py) as a monomer by cyclic voltammetry (CV) technique. Following the morphological, structural, and optical characterization of as-synthesized nanocomposite, the electrochemical techniques were also implemented to evaluate the electrochemical features of fabricated electrodes. The limit of quantification (LOQ) and limit of detection (LOD) values were calculated as 0.1 × 10-10 M, and 2.5 × 10-12 M, respectively in addition to satisfactory selectivity, stability, reproducibility and reusability. The findings revealed that the proposed CAR imprinted electrochemical sensor can be successfully employed in food safety.


Asunto(s)
Impresión Molecular , Nanocompuestos , Bencimidazoles , Carbamatos , Técnicas Electroquímicas/métodos , Electrodos , Jugos de Frutas y Vegetales , Límite de Detección , Impresión Molecular/métodos , Reproducibilidad de los Resultados
16.
Food Chem Toxicol ; 163: 112994, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35398444

RESUMEN

Organophosphorus pesticides are widely utilized in agricultural fertility. However, their long-term accumulations result in serious damage to human health and ecological balance. Paraoxon (PAR) can block acetylcholinesterase in the human body, resulting in death. Thus, in this study, a molecularly imprinted electrochemical PAR sensor based on multiwalled carbon nanotubes (MWCNTs)/molybdenum disulfide nanoparticles (MoS2NPs) nanocomposite (MoS2NPs@MWCNTs) was proposed for selective tap water determination. A hydrothermal fabrication approach was firstly implemented to prepare MoS2NPs@MWCNTs nanocomposite. Afterwards, the formation of PAR imprinted electrochemical electrode was performed on nanocomposite modified glassy carbon electrode (GCE) in presence of PAR as template and pyrrole (Py) as a monomer by cyclic voltammetry (CV) technique. Just after determining the physicochemical features of as-fabricated nanostructures by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), Raman spectroscopy, and atomic force microscopy (AFM), the electrochemical behavior of the fabricated sensors was determined through CV, differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The suggested imprinted electrode provided the acceptable limit of quantification (LOQ) and limit of detection (LOD) values of 1.0 × 10-11 M, and 2.0 × 10-12 M, respectively. As a consequence, the proposed PAR imprinted electrochemical sensor can be offered for the determining safe tap water and its utility.


Asunto(s)
Impresión Molecular , Nanotubos de Carbono , Plaguicidas , Acetilcolinesterasa , Técnicas Electroquímicas/métodos , Humanos , Nanotubos de Carbono/química , Compuestos Organofosforados , Paraoxon , Agua
17.
Anal Chim Acta ; 1200: 339609, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35256133

RESUMEN

Small cell lung cancer (SCLC) is highly associated with the risk of early metastasis. Neuron-specific enolase (NSE), a biomarker of SCLC, is directly related to tumor burden and early diagnosis. This biomarker exists in nerve tissue and neuroendocrine tissue. In this study, an electrochemical NSE immunosensor based on gold nanoparticles modified molybdenum disulfide and reduced graphene oxide (AuNPs@MoS2/rGO) as the electrode platform and CoFe2O4@Ag nanocomposite as the signal amplification was developed. The immobilization of anti-NSE capture antibody was successfully performed on AuNPs@MoS2/rGO modified electrode surface by amino-gold affinity and the conjugation of anti-NSE secondary antibody on CoFe2O4@Ag nanocomposite was successfully completed by the strong esterification reaction. The final immunosensor was designed by the specific interactions of electrode platform and signal amplification. The fabricated nanocomposites and electrochemical immunosensor were characterized by both physicochemical characterization techniques including transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FTIR), and electrochemical methods such as cyclic voltammetry (CV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS). The quantification limit (LOQ) and the determination limit (LOD) were computed to be 0.01 pg mL-1 and 3.00 fg mL-1, respectively. In brief, it can be speculated that the constructed electrochemical NSE immunosensor can be successfully utilized in the early diagnosis for lung cancer.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanopartículas del Metal , Nanocompuestos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Oro/química , Grafito/química , Inmunoensayo/métodos , Límite de Detección , Nanopartículas del Metal/química , Molibdeno/química , Nanocompuestos/química , Fosfopiruvato Hidratasa
18.
Environ Res ; 205: 112475, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863692

RESUMEN

Heavy metal pollution has become a severe threat to human health and the environment for many years. Their extensive release can severely damage the environment and promote the generation of many harmful diseases of public health concerns. These toxic heavy metals can cause many health problems such as brain damage, kidney failure, immune system disorder, muscle weakness, paralysis of the limbs, cardio complaint, nervous system. For many years, researchers focus on developing specific reliable analytical methods for the determination of heavy metal ions and preventing their acute toxicity to a significant extent. The modern researchers intended to utilize efficient and discerning materials, e.g. nanomaterials, especially the metal nanoparticles to detect heavy metal ions from different real sources rapidly. The metal nanoparticles have been broadly utilized as a sensing material for the colorimetric detection of toxic metal ions. The metal nanoparticles such as Gold (Au), Silver (Ag), and Copper (Cu) exhibited localized plasmon surface resonance (LPSR) properties which adds an outstanding contribution to the colorimetric sensing field. Though, the stability of metal nanoparticles was major issue to be exploited colorimetric sensing of heavy emtal ions, but from last decade different capping and stabilizing agents such as amino acids, vitmains, acids and ploymers were used to functionalize the metal surface of metal nanoparticles. These capping agents prevent the agglomeration of nanoparticles and make them more active for prolong period of time. This review covers a comprehensive work carried out for colorimetric detection of heavy metals based on metal nanoparticles from the year 2014 to onwards.


Asunto(s)
Nanopartículas del Metal , Metales Pesados , Colorimetría/métodos , Cobre , Oro/química , Humanos , Iones , Nanopartículas del Metal/química , Plata/química
19.
Mikrochim Acta ; 189(1): 24, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34894290

RESUMEN

A novel molecularly imprinted electrochemical biosensor for glucose detection is reported based on a hierarchical N-rich carbon conductive-coated TNO structure (TNO@NC). Firstly, TNO@NC was fabricated by a novel polypyrrole-chemical vapor deposition (PPy-CVD) method with minimal waste generation. Afterward, the electrode modification with TNO@NC was performed by dropping TNO@NC particles on glassy carbon electrode surfaces by infrared heat lamp. Finally, the glucose-imprinted electrochemical biosensor was developed in presence of 75.0 mM pyrrole and 25.0 mM glucose in a potential range from + 0.20 to + 1.20 V versus Ag/AgCl via cyclic voltammetry (CV). The physicochemical and electrochemical characterizations of the fabricated molecularly imprinted biosensor was conducted by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) method, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), and CV techniques. The findings demonstrated that selective, sensitive, and stable electrochemical signals were proportional to different glucose concentrations, and the sensitivity of molecularly imprinted electrochemical biosensor for glucose detection was estimated to be 18.93 µA µM-1 cm-2 (R2 = 0.99) at + 0.30 V with the limit of detection (LOD) of 1.0 × 10-6 M. Hence, it can be speculated that the fabricated glucose-imprinted biosensor may be used in a multitude of areas, including public health and food quality.


Asunto(s)
Técnicas Biosensibles/métodos , Glucemia/análisis , Carbono/química , Niobio/química , Óxidos/química , Titanio/química , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Límite de Detección , Impresión Molecular , Porosidad , Reproducibilidad de los Resultados
20.
Mikrochim Acta ; 188(12): 425, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34812927

RESUMEN

A sensitive and fast sandwich-type electrochemical SARS-CoV­2 (COVID-19) nucleocapsid protein immunosensor was prepared based on bismuth tungstate/bismuth sulfide composite (Bi2WO6/Bi2S3) as electrode platform and graphitic carbon nitride sheet decorated with gold nanoparticles (Au NPs) and tungsten trioxide sphere composite (g-C3N4/Au/WO3) as signal amplification. The electrostatic interactions between capture antibody and Bi2WO6/Bi2S3 led to immobilization of the capture nucleocapsid antibody. The detection antibody was then conjugated to g-C3N4/Au/WO3 via the affinity of amino-gold. After physicochemically characterization via transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) analysis were implemented to evaluate the electrochemical performance of the prepared immunosensor. The detection of SARS-CoV-2 nucleocapsid protein (SARS-CoV-2 NP) in a small saliva sample (100.0 µL) took just 30 min and yielded a detection limit (LOD) of 3.00 fg mL-1, making it an effective tool for point-of-care COVID-19 testing.


Asunto(s)
Técnicas Electroquímicas , SARS-CoV-2 , Técnicas Biosensibles , Oro , Nanopartículas del Metal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA