Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 5687, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584076

RESUMEN

Cell migration is important for development and its aberrant regulation contributes to many diseases. The Scar/WAVE complex is essential for Arp2/3 mediated lamellipodia formation during mesenchymal cell migration and several coinciding signals activate it. However, so far, no direct negative regulators are known. Here we identify Nance-Horan Syndrome-like 1 protein (NHSL1) as a direct binding partner of the Scar/WAVE complex, which co-localise at protruding lamellipodia. This interaction is mediated by the Abi SH3 domain and two binding sites in NHSL1. Furthermore, active Rac binds to NHSL1 at two regions that mediate leading edge targeting of NHSL1. Surprisingly, NHSL1 inhibits cell migration through its interaction with the Scar/WAVE complex. Mechanistically, NHSL1 may reduce cell migration efficiency by impeding Arp2/3 activity, as measured in cells using a Arp2/3 FRET-FLIM biosensor, resulting in reduced F-actin density of lamellipodia, and consequently impairing the stability of lamellipodia protrusions.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Proteínas/metabolismo , Seudópodos/fisiología , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Ratones , Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Nat Cell Biol ; 21(11): 1370-1381, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31685997

RESUMEN

Cell migration is hypothesized to involve a cycle of behaviours beginning with leading edge extension. However, recent evidence suggests that the leading edge may be dispensable for migration, raising the question of what actually controls cell directionality. Here, we exploit the embryonic migration of Drosophila macrophages to bridge the different temporal scales of the behaviours controlling motility. This approach reveals that edge fluctuations during random motility are not persistent and are weakly correlated with motion. In contrast, flow of the actin network behind the leading edge is highly persistent. Quantification of actin flow structure during migration reveals a stable organization and asymmetry in the cell-wide flowfield that strongly correlates with cell directionality. This organization is regulated by a gradient of actin network compression and destruction, which is controlled by myosin contraction and cofilin-mediated disassembly. It is this stable actin-flow polarity, which integrates rapid fluctuations of the leading edge, that controls inherent cellular persistence.


Asunto(s)
Actinas/genética , Movimiento Celular/genética , Drosophila melanogaster/embriología , Mecanotransducción Celular , Pez Cebra/embriología , Actinas/metabolismo , Animales , Polaridad Celular , Rastreo Celular , Cofilina 1/genética , Cofilina 1/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hemocitos/citología , Hemocitos/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Miosinas/genética , Miosinas/metabolismo , Cultivo Primario de Células , Pez Cebra/genética , Pez Cebra/metabolismo , Proteína Fluorescente Roja
3.
J Cell Sci ; 132(11)2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31076510

RESUMEN

Interactions between different cell types can induce distinct contact inhibition of locomotion (CIL) responses that are hypothesised to control population-wide behaviours during embryogenesis. However, our understanding of the signals that lead to cell-type specific repulsion and the precise capacity of heterotypic CIL responses to drive emergent behaviours is lacking. Using a new model of heterotypic CIL, we show that fibrosarcoma cells, but not fibroblasts, are actively repelled by epithelial cells in culture. We show that knocking down EphB2 or ERK in fibrosarcoma cells specifically leads to disruption of the repulsion phase of CIL in response to interactions with epithelial cells. We also examine the population-wide effects when these various cell combinations are allowed to interact in culture. Unlike fibroblasts, fibrosarcoma cells completely segregate from epithelial cells and inhibiting their distinct CIL response by knocking down EphB2 or ERK family proteins also disrupts this emergent sorting behaviour. These data suggest that heterotypic CIL responses, in conjunction with processes such as differential adhesion, may aid the sorting of cell populations.


Asunto(s)
Comunicación Celular/fisiología , Inhibición de Contacto/fisiología , Células Epiteliales/fisiología , Fibroblastos/fisiología , Células Madre Mesenquimatosas/fisiología , Células 3T3 , Animales , Línea Celular , Movimiento Celular/fisiología , Separación Celular , Desarrollo Embrionario/fisiología , Quinasas MAP Reguladas por Señal Extracelular/genética , Fibrosarcoma/metabolismo , Humanos , Ratones , Receptor EphB2/genética
4.
Curr Biol ; 27(22): 3526-3534.e4, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29129537

RESUMEN

The basement membrane (BM) is a thin layer of extracellular matrix (ECM) beneath nearly all epithelial cell types that is critical for cellular and tissue function. It is composed of numerous components conserved among all bilaterians [1]; however, it is unknown how all of these components are generated and subsequently constructed to form a fully mature BM in the living animal. Although BM formation is thought to simply involve a process of self-assembly [2], this concept suffers from a number of logistical issues when considering its construction in vivo. First, incorporation of BM components appears to be hierarchical [3-5], yet it is unclear whether their production during embryogenesis must also be regulated in a temporal fashion. Second, many BM proteins are produced not only by the cells residing on the BM but also by surrounding cell types [6-9], and it is unclear how large, possibly insoluble protein complexes [10] are delivered into the matrix. Here we exploit our ability to live image and genetically dissect de novo BM formation during Drosophila development. This reveals that there is a temporal hierarchy of BM protein production that is essential for proper component incorporation. Furthermore, we show that BM components require secretion by migrating macrophages (hemocytes) during their developmental dispersal, which is critical for embryogenesis. Indeed, hemocyte migration is essential to deliver a subset of ECM components evenly throughout the embryo. This reveals that de novo BM construction requires a combination of both production and distribution logistics allowing for the timely delivery of core components.


Asunto(s)
Membrana Basal/fisiología , Matriz Extracelular/metabolismo , Animales , Membrana Basal/metabolismo , Movimiento Celular/fisiología , Colágeno/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Células Epiteliales/metabolismo , Matriz Extracelular/fisiología , Macrófagos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...