Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diabetes Ther ; 10(5): 1835-1846, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31300948

RESUMEN

INTRODUCTION: We investigated the mechanisms of the glucose-lowering effects of teneligliptin and canagliflozin, a sodium-glucose cotransporter-2 (SGLT2) inhibitor, by monitoring several gastrointestinal peptides using the most appropriate measuring methods during multiple meal tolerance tests (MTTs) and flash glucose monitoring. METHODS: Twelve Japanese patients with type 2 diabetes were enrolled in the 14-day study. Subjects were treated with teneligliptin 20 mg/day from day 4, followed by a combination tablet of teneligliptin 20 mg and canagliflozin 100 mg (T/C) per day from day 11. MTTs were conducted on days 3 (premedication; Pre), 10 (teneligliptin; T) and 13 (T/C) to evaluate plasma glucose, C-peptide, glucagon, active glucagon-like peptide-1 (GLP-1), active gastric inhibitory polypeptide (GIP), ghrelin and des-acyl ghrelin. RESULTS: Plasma glucose was significantly decreased with the progress of treatment intervention, and C-peptide was significantly decreased in T/C compared to the others. Plasma postprandial glucagon was increased for 90 min from fasting in Pre, but only for 30 min in T and T/C. Plasma postprandial active GLP-1 was significantly increased in T compared to Pre, and that of T/C was significantly higher than T. Plasma postprandial active GIP was increased in T and T/C compared to Pre. Plasma ghrelin and des-acyl ghrelin levels did not change during the treatment. CONCLUSION: Teneligliptin increased incretin hormones and suppressed postprandial glucagon secretion as expected. Concurrent use of canagliflozin and teneligliptin improved glycemic control without increasing postprandial glucagon secretion, and increased postprandial GLP-1 secretion and decreased the required amount of postprandial insulin secretion. The underlying mechanisms may involve canagliflozin's inhibitory activity against not only SGLT2 but also SGLT1. TRIAL REGISTRATION: UMIN identifier, UMIN000030043. FUNDING: Mitsubishi Tanabe Pharma Corporation and a Grant for Clinical Research from Miyazaki University Hospital.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA