Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes Genet Syst ; 88(3): 175-88, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24025246

RESUMEN

E. coli YdbK is predicted to be a pyruvate:flavodoxin oxidoreductase (PFOR). However, enzymatic activity and the regulation of gene expression of it are not well understood. In this study, we found that E. coli cells overexpressing the ydbK gene had enhanced PFOR activity, indicating the product of ydbK to be a PFOR. The PFOR was labile to oxygen. The expression of ydbK was induced by superoxide generators such as methyl viologen (MV) in a SoxS-dependent manner after a lag period. We identified a critical element upstream of ydbK gene required for the induction by MV and proved direct binding of SoxS to the element. E. coli ydbK mutant was highly sensitive to MV, which was enhanced by additional inactivation of fpr gene encoding ferredoxin (flavodoxin):NADP(H) reductase (FPR). Aconitase activity, a superoxide sensor, was more extensively decreased by MV in the E. coli ydbK mutant than in wild-type strain. The induction level of soxS gene was higher in E. coli ydbK fpr double mutant than in wild-type strain. These results indicate that YdbK helps to protect cells from oxidative stress. It is possible that YdbK maintains the cellular redox state together with FPR and is involved in the reduction of oxidized proteins including SoxR in the late stages of the oxidative stress response in E. coli.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Cetona Oxidorreductasas/genética , Cetona Oxidorreductasas/metabolismo , Estrés Oxidativo , Transactivadores/genética , Transactivadores/metabolismo , Aconitato Hidratasa/metabolismo , Secuencias de Aminoácidos , Secuencia de Bases , Escherichia coli/enzimología , Escherichia coli/genética , Ferredoxina-NADP Reductasa/genética , Ferredoxina-NADP Reductasa/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Oxidación-Reducción , Paraquat/farmacología , Regiones Promotoras Genéticas , Superóxidos/metabolismo
2.
J Radiat Res ; 53(1): 58-71, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22302046

RESUMEN

Reactive oxygen species (ROS) act as a mediator of ionizing radiation-induced cellular damage. Previous studies have indicated that MnSOD (SOD2) plays a critical role in protection against ionizing radiation in mammalian cells. In this study, we constructed two types of stable HeLa cell lines overexpressing SOD2, HeLa S3/SOD2 and T-REx HeLa/SOD2, to elucidate the mechanisms underlying the protection against radiation by SOD2. SOD2 overexpression in mitochondria enhanced the survival of HeLa S3 and T-REx HeLa cells following γ-irradiation. The levels of γH2AX significantly decreased in HeLa S3/SOD2 and T-REx HeLa/SOD2 cells compared with those in the control cells. MitoSox(TM) Red assays showed that both lines of SOD2-expressing cells showed suppression of the superoxide generation in mitochondria. Furthermore, flow cytometry with a fluorescent probe (2',7'-dichlorofluorescein) revealed that the cellular levels of ROS increased in HeLa S3 cells during post-irradiation incubation, but the increase was markedly attenuated in HeLa S3/SOD2 cells. DNA microarray analysis revealed that, of 47,000 probe sets analyzed, 117 and 166 probes showed more than 2-fold changes after 5.5 Gy of γ-irradiation in control and HeLa S3/SOD2 cells, respectively. Pathway analysis revealed different expression profiles in irradiated control cells and irradiated SOD2-overexpressing cells. These results indicate that SOD2 protects HeLa cells against cellular effects of γ-rays through suppressing oxidative stress in irradiated cells caused by ROS generated in the mitochondria and through regulating the expression of genes which play a critical role in protection against ionizing radiation.


Asunto(s)
Regulación de la Expresión Génica/efectos de la radiación , Proteínas de Neoplasias/fisiología , Tolerancia a Radiación/fisiología , Superóxido Dismutasa/fisiología , Roturas del ADN de Doble Cadena , Inducción Enzimática , Rayos gamma/efectos adversos , Redes Reguladoras de Genes/efectos de la radiación , Células HeLa/metabolismo , Células HeLa/efectos de la radiación , Humanos , Mitocondrias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo/fisiología , Estrés Oxidativo/efectos de la radiación , Tolerancia a Radiación/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Superóxidos/metabolismo
3.
J Biochem ; 150(6): 649-57, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21873335

RESUMEN

8-oxo-dGTP is generated in the nucleotide pool by direct oxidation of dGTP or phosphorylation of 8-oxo-dGDP. It can be incorporated into DNA during replication, which would result in mutagenic consequences. The frequency of spontaneous mutations remains low in cells owing to the action of enzymes degrading such mutagenic substrates. Escherichia coli MutT and human MTH1 hydrolyze 8-oxo-dGTP to 8-oxo-dGMP. Human NUDT5 as well as human MTH1 hydrolyze 8-oxo-dGDP to 8-oxo-dGMP. These enzymes prevent mutations caused by misincorporation of 8-oxo-dGTP into DNA. In this study, we identified a novel MutT homolog (NDX-1) of Caenorhabditis elegans that hydrolyzes 8-oxo-dGDP to 8-oxo-dGMP. NDX-1 did not hydrolyze 8-oxo-dGTP, 2-hydroxy-dATP or 2-hydroxy-dADP. Expression of NDX-1 significantly reduced spontaneous A:T to C:G transversions and mitigated the sensitivity to a superoxide-generating agent, methyl viologen, in an E. coli mutT mutant. In C. elegans, RNAi of ndx-1 did not affect the lifespan of the worm. However, the sensitivity to methyl viologen and menadione bisulfite of the ndx-1-RNAi worms was enhanced compared with that of the control worms. These facts indicate that NDX-1 is involved in sanitization of 8-oxo-dGDP and plays a critical role in defense against oxidative stress in C. elegans.


Asunto(s)
Caenorhabditis elegans/metabolismo , Guanosina Monofosfato/análogos & derivados , Nucleótidos/metabolismo , Estrés Oxidativo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Clonación Molecular , Activación Enzimática , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Prueba de Complementación Genética , Guanosina Monofosfato/metabolismo , Peróxido de Hidrógeno/farmacología , Hidrólisis , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Mutación , Paraquat/farmacología , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Interferencia de ARN , Alineación de Secuencia , Vitamina K 3/farmacología
4.
J Nucleic Acids ; 2010: 807579, 2010 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-20976264

RESUMEN

Escherichia coli DNA polymerase IV (Pol IV) is involved in bypass replication of damaged bases in DNA. Reactive oxygen species (ROS) are generated continuously during normal metabolism and as a result of exogenous stress such as ionizing radiation. ROS induce various kinds of base damage in DNA. It is important to examine whether Pol IV is able to bypass oxidatively damaged bases. In this study, recombinant Pol IV was incubated with oligonucleotides containing thymine glycol (dTg), 5-formyluracil (5-fodU), 5-hydroxymethyluracil (5-hmdU), 7,8-dihydro-8-oxoguanine (8-oxodG) and 1,2-dihydro-2-oxoadenine (2-oxodA). Primer extension assays revealed that Pol IV preferred to insert dATP opposite 5-fodU and 5-hmdU, while it inefficiently inserted nucleotides opposite dTg. Pol IV inserted dCTP and dATP opposite 8-oxodG, while the ability was low. It inserted dCTP more effectively than dTTP opposite 2-oxodA. Pol IV's ability to bypass these lesions decreased in the order: 2-oxodA > 5-fodU~5-hmdU > 8-oxodG > dTg. The fact that Pol IV preferred to insert dCTP opposite 2-oxodA suggests the mutagenic potential of 2-oxodA leading to A:T→G:C transitions. Hydrogen peroxide caused an ~2-fold increase in A:T→G:C mutations in E. coli, while the increase was significantly greater in E. coli overexpressing Pol IV. These results indicate that Pol IV may be involved in ROS-enhanced A:T→G:C mutations.

5.
DNA Repair (Amst) ; 8(7): 844-51, 2009 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-19481506

RESUMEN

Oxidatively damaged bases in DNA cause many types of deleterious effects. The main enzyme that removes such lesions is DNA glycosylase, and accordingly, DNA glycosylase plays an important role in genome stability. Recently, a relationship between DNA glycosylases and aging has been suggested, but it remains controversial. Here, we investigated DNA glycosylases of C. elegans, which is a useful model organism for studying aging. We firstly identified a C. elegans homolog of endonuclease III (NTH), which is a well-conserved DNA glycosylase for oxidatively damaged pyrimidine bases, based on the activity and homology. Blast searching of the Wormbase database retrieved a sequence R10E4.5, highly homologous to the human NTH1. However, the R10E4.5-encoded protein did not have NTH activity, and this was considered to be due to lack of the N-terminal region crucial for the activity. Therefore, we purified the protein encoded by the sequence containing both R10E4.5 and the 117-bp region upstream from it, and found that the protein had the NTH activity. The endogenous CeNTH in the extract of C. elegans showed the same DNA glycosylase activity. Therefore, we concluded that the genuine C. elegans NTH gene is not the R10E4.5 but the sequence containing both R10E4.5 and the 117-bp upstream region. NTH-deficient C. elegans showed no difference from the wild-type in lifespan and was not more sensitive to two oxidizing agents, H2O2 and methyl viologen. This suggests that C. elegans has an alternative DNA glycosylase that repairs pyrimidine bases damaged by these agents. Indeed, DNA glycosylase activity that cleaved thymine glycol containing oligonucleotides was detected in the extract of the NTH-deficient C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , ADN Glicosilasas/metabolismo , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/aislamiento & purificación , Daño del ADN , ADN Glicosilasas/genética , Reparación del ADN , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Desoxirribonucleasa (Dímero de Pirimidina)/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Prueba de Complementación Genética , Humanos , Peróxido de Hidrógeno/farmacología , Cinética , Longevidad , Datos de Secuencia Molecular , Mutación , Oxidación-Reducción/efectos de los fármacos , Paraquat/farmacología , Nucleótidos de Pirimidina/genética , Nucleótidos de Pirimidina/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Temperatura
6.
Nucleic Acids Res ; 37(7): 2116-25, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19223326

RESUMEN

The 5-formyluracil (5-foU), a major mutagenic oxidative damage of thymine, is removed from DNA by Nth, Nei and MutM in Escherichia coli. However, DNA polymerases can also replicate past the 5-foU by incorporating C and G opposite the lesion, although the mechanism of correction of the incorporated bases is still unknown. In this study, using a borohydride-trapping assay, we identified a protein trapped by a 5-foU/C-containing oligonucleotide in an extract from E. coli mutM nth nei mutant. The protein was subsequently purified from the E. coli mutM nth nei mutant and was identified as KsgA, a 16S rRNA adenine methyltransferase. Recombinant KsgA also formed the trapped complex with 5-foU/C- and thymine glycol (Tg)/C-containing oligonucleotides. Furthermore, KsgA excised C opposite 5-foU, Tg and 5-hydroxymethyluracil (5-hmU) from duplex oligonucleotides via a beta-elimination reaction, whereas it could not remove the damaged base. In contrast, KsgA did not remove C opposite normal bases, 7,8-dihydro-8-oxoguanine and 2-hydroxyadenine. Finally, the introduction of the ksgA mutation increased spontaneous mutations in E. coli mutM mutY and nth nei mutants. These results demonstrate that KsgA has a novel DNA glycosylase/AP lyase activity for C mispaired with oxidized T that prevents the formation of mutations, which is in addition to its known rRNA adenine methyltransferase activity essential for ribosome biogenesis.


Asunto(s)
ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Escherichia coli/enzimología , Metiltransferasas/metabolismo , Secuencia de Aminoácidos , ADN Glicosilasas/genética , ADN Glicosilasas/aislamiento & purificación , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/aislamiento & purificación , ADN-Formamidopirimidina Glicosilasa/química , ADN-Formamidopirimidina Glicosilasa/genética , Desoxirribonucleasa (Dímero de Pirimidina)/química , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Metiltransferasas/química , Metiltransferasas/genética , Alineación de Secuencia
7.
Genes Cells ; 14(2): 261-70, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19170771

RESUMEN

Oxidative base damage leads to alteration of genomic information and is implicated as a cause of aging and carcinogenesis. To combat oxidative damage to DNA, cells contain several DNA glycosylases including OGG1, NTH1 and the Nei-like proteins, NEIL1 and NEIL2. A third Nei-like protein, NEIL3, is composed of an amino-terminal Nei-like domain and an unknown carboxy-terminal domain. In contrast to the other well-described DNA glycosylases, the DNA glycosylase activity and in vivo repair function of NEIL3 remains unclear. We show here that the structural modeling of the putative NEIL3 glycosylase domain (1-290) fits well to the known Escherichia coli Fpg crystal structure. In spite of the structural similarity, the recombinant NEIL3 and NEIL3(1-290) proteins do not cleave any of several test oligonucleotides containing a single modified base. Within the substrates, we detected AP lyase activity for single-stranded (ss) DNA but double-stranded (ds) DNA. The activity is abrogated completely in mutants with an amino-terminal deletion and at the zinc-finger motif. Surprisingly, NEIL3 partially rescues an E. coli nth nei mutant from hydrogen peroxide sensitivity. Taken together, repair of certain base damage including base loss in ssDNA may be mediated by NEIL3.


Asunto(s)
ADN de Cadena Simple/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Escherichia coli/genética , Estrés Oxidativo/genética , Secuencia de Aminoácidos , Animales , ADN Glicosilasas/química , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-Formamidopirimidina Glicosilasa/química , Resistencia a Medicamentos/genética , Escherichia coli/enzimología , Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de Escherichia coli/química , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Datos de Secuencia Molecular , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo , Organismos Modificados Genéticamente , Oxidantes/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
8.
J Radiat Res ; 50(1): 19-26, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18987436

RESUMEN

Base moieties in DNA are spontaneously threatened by naturally occurring chemical reactions such as deamination, hydrolysis and oxidation. These DNA modifications have been considered to be major causes of cell death, mutations and cancer induction in organisms. Organisms have developed the DNA base excision repair pathway as a defense mechanism to protect them from these threats. DNA glycosylases, the key enzyme in the base excision repair pathway, are highly conserved in evolution. Uracil constantly occurs in DNA. Uracil in DNA arises by spontaneous deamination of cytosine to generate pro-mutagenic U:G mispairs. Uracil in DNA is also produced by the incorporation of dUMP during DNA replication. Uracil-DNA glycosylase (UNG) acts as a major repair enzyme that protects DNA from the deleterious consequences of uracil. The first UNG activity was discovered in E. coli in 1974. This was also the first discovery of base excision repair. The sequence encoded by the ung gene demonstrates that the E. coli UNG is highly conserved in viruses, bacteria, archaea, yeast, mice and humans. In this review, we will focus on central and recent findings on the generation, biological consequences and repair mechanisms of uracil in DNA and on the biological significance of uracil-DNA glycosylase.


Asunto(s)
Arabinofuranosil Uracilo/metabolismo , Daño del ADN/fisiología , Reparación del ADN/fisiología , Reparación del ADN/efectos de la radiación , Modelos Biológicos , Uracil-ADN Glicosidasa/metabolismo , Animales , Simulación por Computador , Humanos
9.
Mutagenesis ; 23(5): 407-13, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18524757

RESUMEN

Uracil arises in DNA from spontaneous deamination of cytosine and through incorporation of dUMP by DNA polymerase during DNA replication. Excision of uracil by the action of uracil-DNA glycosylase (Ung) initiates the base excision repair pathway to counter the promutagenic base modification. In this study, we cloned a cDNA-encoding Caenorhabditis elegans homologue (CeUng-1) of Escherichia coli Ung. There was 49% identity in amino acid sequence between E.coli Ung and CeUng-1. Purified CeUng-1 removed uracil from both U:G and U:A base pairs in DNA. It also removed uracil from single-stranded oligonucleotide substrate less efficiently than double-stranded oligonucleotide. The CeUng-1 activity was inhibited by Bacillus subtilis Ung inhibitor, indicating that CeUng-1 is a member of the family-1 Ung group. The mutation in the ung-1 gene did not affect development, fertility and lifespan in C.elegans, suggesting the existence of backup enzyme. However, we could not detect residual uracil excision activity in the extract derived from the ung-1 mutant. The present experiments also showed that the ung-1 mutant of C.elegans was more resistant to NaHSO(3)-inducing cytosine deamination than wild-type strain.


Asunto(s)
Caenorhabditis elegans/enzimología , Uracil-ADN Glicosidasa/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Clonación Molecular , Secuencia Conservada , Citosina/metabolismo , Desaminación , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Sulfitos/toxicidad , Uracil-ADN Glicosidasa/genética
10.
J Radiat Res ; 48(5): 417-24, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17641464

RESUMEN

Bacteria and eukaryotes possess redundant enzymes that recognize and remove oxidatively damaged bases from DNA through base excision repair. DNA glycosylases remove damaged bases to initiate the base excision repair. The exocyclic methyl group of thymine does not escape oxidative damage to produce 5-formyluracil (5-foU) and 5-hydroxymethyluracil (5-hmU). 5-foU is a potentially mutagenic lesion. A homolog of E. coli endonuclease III (SpNth1) had been identified and characterized in Schizosaccharomyces pombe. In this study, we found that SpNth1 recognizes and removes 5-foU and 5-hmU from DNA with similar efficiency. The specific activities for the removal of 5-foU and 5-hmU were comparable with that for thymine glycol. The expression of SpNth1 reduced the hydrogen peroxide toxicity and the frequency of spontaneous mutations in E. coli nth nei mutant. It was also revealed that SpNth1 had DNA glycosylase activity for removing 8-oxo-7,8-dihydroguanine (8-oxoG) from 8-oxoG/G and 8-oxoG/A mispairs. These results indicated that SpNth1 has a broad substrate specificity and is involved in the base excision repair of 8-oxoG and thymine residues oxidized in the methyl group in S. pombe.


Asunto(s)
ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Reparación del ADN/fisiología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Metilación de ADN , Guanina/química , Guanina/metabolismo , Oxidación-Reducción , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Timina/química , Timina/metabolismo
11.
Mol Cell Biol ; 26(1): 343-53, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16354704

RESUMEN

The Schizosaccharomyces pombe rad60 gene is essential for cell growth and is involved in repairing DNA double-strand breaks. Rad60 physically interacts with and is functionally related to the structural maintenance of chromosomes 5 and 6 (SMC5/6) protein complex. In this study, we investigated the role of Rad60 in the recovery from the arrest of DNA replication induced by hydroxyurea (HU). rad60-1 mutant cells arrested mitosis normally when treated with HU. Significantly, Rad60 function is not required during HU arrest but is required on release. However, the mutant cells underwent aberrant mitosis accompanied by irregular segregation of chromosomes, and DNA replication was not completed, as revealed by pulsed-field gel electrophoresis. The deletion of rhp51 suppressed the aberrant mitosis of rad60-1 cells and caused mitotic arrest. These results suggest that Rhp51 and Rad60 are required for the restoration of a stalled or collapsed replication fork after release from the arrest of DNA replication by HU. The rad60-1 mutant was proficient in Rhp51 focus formation after release from the HU-induced arrest of DNA replication or DNA-damaging treatment. Furthermore, the lethality of a rad60-1 rqh1Delta double mutant was suppressed by the deletion of rhp51 or rhp57. These results suggest that Rad60 is required for recombination repair at a step downstream of Rhp51. We propose that Rhp51-dependent DNA structures that cannot activate the mitotic checkpoints accumulate in rad60-1 cells.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Reparación del ADN/genética , Replicación del ADN/genética , Recombinasa Rad51/fisiología , Recombinación Genética/genética , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/genética , Antineoplásicos/farmacología , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Cromosomas Fúngicos , ADN Helicasas/genética , Replicación del ADN/efectos de los fármacos , ADN de Hongos/metabolismo , Resistencia a Antineoplásicos/genética , Eliminación de Gen , Hidroxiurea/farmacología , Mitosis/genética , Mutación , Conformación de Ácido Nucleico , Proteínas Serina-Treonina Quinasas/genética , Recombinasa Rad51/genética , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
12.
J Radiat Res ; 46(2): 205-14, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15988139

RESUMEN

The frequency of G:C-->C:G transversions significantly increases upon exposure of cells to ionizing radiation or reactive oxygen species. Transversions can be prevented by base excision repair, which removes the causative modified bases from DNA. Our previous studies revealed that MutY is responsible for removing guanine from 7,8-dihydro-8-oxoguanine/guanine mispairs (8-oxoG/G) and prevents the generation of G:C-->C:G transversions in E. coli. SpMYH, a homolog of E. coli MutY, had been identified and characterized in the fission yeast S. pombe. Purified SpMYH has adenine DNA glycosylase activity on A/8-oxoG and A/G mismatch-containing oligonucleotides. In this study, we examined whether SpMYH has a similar activity allowing it to remove G from 8-oxoG/G in DNA. The purified SpMYH tightly bound to duplex oligonucleotides containing 8-oxoG/G and removed the unmodified G from 8-oxoG/G as efficiently as A from 8-oxoG/A. The activity was absent in the cell extract prepared from an SpMYH-knockout strain of S. pombe. The expression of SpMYH markedly reduced the frequency of spontaneous G:C-->C:G transversions in the E. coli mutY mutant. These results demonstrate that SpMYH is involved in the repair of 8-oxoG/G, by which it prevents mutations induced by oxidative stress in S. pombe.


Asunto(s)
Disparidad de Par Base , Daño del ADN , ADN Glicosilasas/química , Reparación del ADN , ADN Bacteriano/química , Guanina/análogos & derivados , Guanina/química , Schizosaccharomyces/enzimología , Composición de Base , ADN Glicosilasas/genética , ADN Bacteriano/genética , Schizosaccharomyces/genética
14.
DNA Repair (Amst) ; 4(1): 71-9, 2005 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-15533839

RESUMEN

Bacteria and eukaryotes possess redundant activities that recognize and remove oxidatively damaged bases from DNA through base excision repair. DNA glycosylases excise damaged bases to initiate the base excision repair pathway. hOgg1 and hNTH1, homologues of E. coli MutM and Nth, respectively, had been identified and characterized in human cells. Recent works revealed that human cells have three orthologues of E. coli Nei, hNEIL1, hNEIL2 and hNEIL3. In the present experiments, hNEIL1 protected the E. coli nth nei mutant from lethal effect of hydrogen peroxide and high frequency of spontaneous mutations under aerobic conditions. Furthermore, hNEIL1 efficiently cleaved double stranded oligonucleotides containing 5-formyluracil (5-foU) and 5-hydroxymethyluracil (5-hmU) in vitro via beta- and delta-elimination reactions. Similar activities were detected with hNTH1. These results indicate that hNEIL1 and hNTH1 are DNA glycosylases that excise 5-foU and 5-hmU as efficiently as Tg in human cells.


Asunto(s)
ADN Glicosilasas/metabolismo , Reparación del ADN/genética , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Pentoxil (Uracilo)/análogos & derivados , Timina/análogos & derivados , Uracilo/análogos & derivados , Clonación Molecular , ADN Glicosilasas/genética , ADN Complementario/genética , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Escherichia coli , Humanos , Peróxido de Hidrógeno/toxicidad , Mutación/genética , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Pentoxil (Uracilo)/metabolismo , Timina/metabolismo , Uracilo/metabolismo
15.
Tohoku J Exp Med ; 200(4): 211-29, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-14580152

RESUMEN

Mismatched or damaged base pairs in DNA are mutagenic and both eukaryotes and prokaryotes have a series of repair systems that decrease a spontaneous mutation rate. All exocyclic amino groups of cytosine(C), adenine(A), and guanine(G) contribute to hydrogen bonds for base pairing. High temperature and oxidative stresses increase the deamination of these bases and methylated C. These deaminated sites would be initially recognized by components of DNA repair system. We discovered a novel G/thymine(T)-mismatch binding protein (nGTBP) that bound, with high affinity, to a minimal 14-mer DNA heteroduplex with a strict 5'-TRT GNB-3' sequence (R for purine, N for any bases, and B for "not A," namely for C, G, or T ). This italicized G position mismatched with T could be replaced by hypoxanthine, the deaminated A. The nGTBP, however, barely recognized DNA duplexes individually containing 8-oxo-G, thymine glycol, and 5-methylcytosine.


Asunto(s)
Disparidad de Par Base , Secuencia de Bases , Proteínas de Unión al ADN/metabolismo , Guanina/metabolismo , Timidina/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Humanos , Estructura Molecular , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN , Conformación de Ácido Nucleico , Oxidación-Reducción , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
Nucleic Acids Res ; 31(4): 1191-6, 2003 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-12582238

RESUMEN

The oxidation and deamination of 5-methylcytosine (5mC) in DNA generates a base-pair between 5-hydroxymethyluracil (5hmU) and guanine. 5hmU normally forms a base-pair with adenine. Therefore, the conversion of 5mC to 5hmU is a potential pathway for the generation of 5mC to T transitions. Mammalian cells have high levels of activity of 5hmU-DNA glycosylase, which excises 5hmU from DNA. However, glycosylases that similarly excise 5hmU have not been observed in yeast or Escherichia coli. Recently, we found that E.coli MutM, Nei and Nth have DNA glycosylase activity for 5-formyluracil, which is another type of oxidation product of the thymine methyl group. In this study, we examined whether or not E.coli MutM, Nei and Nth have also DNA glycosylase activity that acts on 5hmU in vitro. When incubated with synthetic duplex oligonucleotides containing 5hmU:G or 5hmU:A, purified MutM, Nei and Nth cleaved the 5hmU:G oligonucleotide 58, 5 and 37 times, respectively, more efficiently than the 5hmU:A oligonucleotide. In E.coli, the 5hmU-DNA glycosylase activities of MutM, Nei and Nth may play critical roles in the repair of 5hmU:G mispairs to avoid 5mC to T transitions.


Asunto(s)
Reparación del ADN , Proteínas de Escherichia coli , Escherichia coli/enzimología , Guanina/metabolismo , N-Glicosil Hidrolasas/metabolismo , Pentoxil (Uracilo)/análogos & derivados , Pentoxil (Uracilo)/metabolismo , Disparidad de Par Base , Secuencia de Bases , ADN Glicosilasas , ADN-Formamidopirimidina Glicosilasa , Desoxirribonucleasa (Dímero de Pirimidina) , Endodesoxirribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Especificidad por Sustrato
17.
In Vitro Cell Dev Biol Anim ; 39(8-9): 348-52, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-15038779

RESUMEN

We investigated the effects of 6- and 10-T static magnetic fields (SMFs) on the expression of protooncogenes using Western blot immunohybridization methods. We used a SMF exposure system, which can expose cells to a spatially inhomogeneous 6 T with a strong magnetic field (MF) gradient (41.7 T/m) and a spatially homogeneous 10 T of the highest magnetic flux density in this experiment. HL-60 cells exposed to either 6- or 10-T SMF for periods of 1 to 48 h did not exhibit remarkable differences in levels of c-Myc and c-Fos protein expression, as compared with sham-exposed cells. In contrast, c-Jun protein expression increased in HL-60 cells after exposure to 6-T SMF for 24, 36, 48, and 72 h. These results suggest that a homogeneous 10-T SMF does not alter the expression of the c-jun, c-fos, and c-myc protooncogenes. However, our observation that exposure to a strong MF gradient induced c-Jun expression suggests that a strong MF gradient may have significant biological effects, particularly regarding processes related to an elevation of c-jun gene expression.


Asunto(s)
Campos Electromagnéticos , Regulación de la Expresión Génica/efectos de la radiación , Proteínas Proto-Oncogénicas c-jun/metabolismo , Células HL-60 , Humanos , Fosforilación , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Factores de Tiempo
18.
J Biol Chem ; 277(44): 42205-13, 2002 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12200441

RESUMEN

Thymine glycol, a potentially lethal DNA lesion produced by reactive oxygen species, can be removed by DNA glycosylase, Escherichia coli Nth (endonuclease III), or its mammalian homologue NTH1. We have found previously that mice deleted in the Nth homologue still retain at least two residual glycosylase activities for thymine glycol. We report herein that in cell extracts from the mNth1 knock-out mouse there is a third thymine glycol glycosylase activity that is encoded by one of three mammalian proteins with sequence similarity to E. coli Fpg (MutM) and Nei (endonuclease VIII). Tissue expression of this mouse Nei-like (designated as Neil1) gene is ubiquitous but much lower than that of mNth1 except in heart, spleen, and skeletal muscle. Recombinant NEIL1 can remove thymine glycol and 5-hydroxyuracil in double- and single-stranded DNA much more efficiently than 8-oxoguanine and can nick the strand by an associated (beta-delta) apurinic/apyrimidinic lyase activity. In addition, the mouse NEIL1 has a unique DNA glycosylase/lyase activity toward mismatched uracil and thymine, especially in U:C and T:C mismatches. These results suggest that NEIL1 is a back-up glycosylase for NTH1 with unique substrate specificity and tissue-specific expression.


Asunto(s)
Endodesoxirribonucleasas/fisiología , Proteínas de Escherichia coli , N-Glicosil Hidrolasas/fisiología , Secuencia de Aminoácidos , Animales , Disparidad de Par Base , ADN Glicosilasas , Desoxirribonucleasa (Dímero de Pirimidina) , Endodesoxirribonucleasas/química , Células HeLa , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Especificidad de Órganos , Homología de Secuencia , Especificidad por Sustrato
19.
Nucleic Acids Res ; 30(15): 3443-8, 2002 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12140329

RESUMEN

5-formyluracil (5-foU) is a potentially mutagenic lesion of thymine produced in DNA by ionizing radiation and various chemical oxidants. The elucidation of repair mechanisms for 5-foU will yield important insights into the biological consequences of the lesion. Recently, we reported that 5-foU is recognized and removed from DNA by Escherichia coli enzymes Nth (endonuclease III), Nei (endonuclease VIII) and MutM (formamidopyrimidine DNA glycosylase). Human cells have been shown to have enzymatic activities that release 5-foU from X-ray-irradiated DNA, but the molecular identities of these activities are not yet known. In this study, we demonstrate that human hNTH1 (endonuclease III homolog) has a DNA glycosylase/AP lyase activity that recognizes 5-foU in DNA and removes it. hNTH1 cleaved 5-foU-containing duplex oligonucleotides via a beta-elimination reaction. It formed Schiff base intermediates with 5-foU-containing oligonucleotides. Furthermore, hNTH1 cleaved duplex oligonucleotides containing all of the 5-foU/N pairs (N = G, A, T or C). The specific activities of hNTH1 for cleavage of oligonucleotides containing 5-foU and thymine glycol were 0.011 and 0.045 nM/min/ng protein, respectively. These results indicate that hNTH1 has DNA glycosylase activity with the potential to recognize 5-foU in DNA and remove it in human cells.


Asunto(s)
Desoxirribonucleasa (Dímero de Pirimidina) , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli , N-Glicosil Hidrolasas/metabolismo , Uracilo/análogos & derivados , Uracilo/metabolismo , ADN Glicosilasas , Endodesoxirribonucleasas/química , Humanos , Cinética , N-Glicosil Hidrolasas/química , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Bases de Schiff/química , Especificidad por Sustrato , Uracilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...