Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1403, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918561

RESUMEN

Closed-loop, autonomous experimentation enables accelerated and material-efficient exploration of large reaction spaces without the need for user intervention. However, autonomous exploration of advanced materials with complex, multi-step processes and data sparse environments remains a challenge. In this work, we present AlphaFlow, a self-driven fluidic lab capable of autonomous discovery of complex multi-step chemistries. AlphaFlow uses reinforcement learning integrated with a modular microdroplet reactor capable of performing reaction steps with variable sequence, phase separation, washing, and continuous in-situ spectral monitoring. To demonstrate the power of reinforcement learning toward high dimensionality multi-step chemistries, we use AlphaFlow to discover and optimize synthetic routes for shell-growth of core-shell semiconductor nanoparticles, inspired by colloidal atomic layer deposition (cALD). Without prior knowledge of conventional cALD parameters, AlphaFlow successfully identified and optimized a novel multi-step reaction route, with up to 40 parameters, that outperformed conventional sequences. Through this work, we demonstrate the capabilities of closed-loop, reinforcement learning-guided systems in exploring and solving challenges in multi-step nanoparticle syntheses, while relying solely on in-house generated data from a miniaturized microfluidic platform. Further application of AlphaFlow in multi-step chemistries beyond cALD can lead to accelerated fundamental knowledge generation as well as synthetic route discoveries and optimization.

2.
Dalton Trans ; 50(37): 13086-13095, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34581368

RESUMEN

The steady-state and ultrafast to supra-nanosecond excited state dynamics of fac-[Re(NBI-phen)(CO)3(L)](PF6) (NBI-phen = 16H-benzo[4',5']isoquinolino[2',1':1,2]imidazo[4,5-f][1,10]phenanthrolin-16-one) as well as their respective models of the general molecular formula [Re(phen)(CO)3(L)](PF6) (L = PPh3 and CH3CN) has been investigated using transient absorption and time-gated photoluminescence spectroscopy. The NBI-phen containing molecules exhibited enhanced visible light absorption with respect to their models and a rapid formation (<6 ns) of the triplet ligand-centred (LC) excited state of the organic ligand, NBI-phen. These triplet states exhibit an extended excited state lifetime that enable the energized molecules to readily engage in triplet-triplet annihilation photochemistry.

3.
J Phys Chem Lett ; 12(15): 3718-3723, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33835808

RESUMEN

Quantum-dot/molecule composites (QD/mol) have demonstrated useful photochemical properties for many photonic and optoelectronic applications; however, a comprehensive understanding of these materials remains elusive. This work introduces a series of cadmium(II) selenide/1-pyrenecarboxylic acid (CdSe/PCA) nanomaterials featuring bespoke PCA surface coverage on CdSe585 (coded by the peak of the first exciton absorption band) to glean insight into the QD/mol photophysical behavior. Tailoring the energy gap between the CdSe585 first exciton band (2.1 eV) and the lowest PCA triplet level (T1 = 2.0 eV) to be nearly isoenergetic, strong thermally activated delayed photoluminescence (TADPL) is observed resulting from reverse triplet-triplet energy transfer. The resultant average decay time constant (τobs) of the photoluminescence emanating from CdSe585 is deterministically controlled with surface-bound PCAn chromophores (n = average number of adsorbed PCA molecules) by shifting the triplet excited state equilibrium from the CdSe585 to the PCA molecular triplet reservoir as a function of n.

4.
J Am Chem Soc ; 142(25): 10883-10893, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32497428

RESUMEN

Thermally activated photophysical processes are ubiquitous in numerous organic and metal-organic molecules, leading to chromophores with excited-state properties that can be considered an equilibrium mixture of the available low-lying states. Relative populations of the equilibrated states are governed by temperature. Such molecules have been devised as high quantum yield emitters in modern organic light-emitting diode technology and for deterministic excited-state lifetime control to enhance chemical reactivity in solar energy conversion and photocatalytic schemes. The recent discovery of thermally activated photophysics at CdSe nanocrystal-molecule interfaces enables a new paradigm wherein molecule-quantum dot constructs are used to systematically generate material with predetermined photophysical response and excited-state properties. Semiconductor nanomaterials feature size-tunable energy level engineering, which considerably expands the purview of thermally activated photophysics beyond what is possible using only molecules. This Perspective is intended to provide a nonexhaustive overview of the advances that led to the integration of semiconductor quantum dots in thermally activated delayed photoluminescence (TADPL) schemes and to identify important challenges moving into the future. The initial establishment of excited-state lifetime extension utilizing triplet-triplet excited-state equilibria is detailed. Next, advances involving the rational design of molecules composed of both metal-containing and organic-based chromophores that produce the desired TADPL are described. Finally, the recent introduction of semiconductor nanomaterials into hybrid TADPL constructs is discussed, paving the way toward the realization of fine-tuned deterministic control of excited-state decay. It is envisioned that libraries of synthetically facile composites will be broadly deployed as photosensitizers and light emitters for numerous synthetic and optoelectronic applications in the near future.

5.
Inorg Chem ; 57(17): 11264-11274, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30129754

RESUMEN

The impact on the morphology nanoceramic materials generated from group 4 metal alkoxides ([M(OR)4]) and the same precursors modified by 6,6'-(((2-hydroxyethyl)azanediyl)bis(methylene))bis(2,4-di- tert-butylphenol) (referred to as H3-AM-DBP2 (1)) was explored. The products isolated from the 1:1 stoichiometric reaction of a series of [M(OR)4] where M = Ti, Zr, or Hf; OR = OCH(CH3)2(OPr i); OC(CH3)3(OBu t); OCH2C(CH3)3(ONep) with H3-AM-DBP2 proved, by single crystal X-ray diffraction, to be [(ONep)Ti( k4( O,O',O'',N)-AM-DBP2)] (2), [(OR)M(µ( O)- k3( O',O'',N)-AM-DBP2)]2 [M = Zr: OR = OPr i, 3·tol; OBu t, 4·tol; ONep, 5·tol; M = Hf: OR = OBu t, 6·tol; ONep, 7·tol]. The product from each system led to a tetradentate AM-DBP2 ligand and retention of a parent alkoxide ligand. For the monomeric Ti derivative (2), the metal was solved in a trigonal bipyramidal geometry, whereas for the Zr (3-5) and Hf (6, 7) derivatives a symmetric dinuclear complex was formed where the ethoxide moiety of the AM-DBP2 ligand bridges to the other metal center, generating an octahedral geometry. High quality density functional theory level gas-phase electronic structure calculations on compounds 2-7 using Gaussian 09 were used for meaningful time dependent density functional theory calculations in the interpretation of the UV-vis absorbance spectral data on 2-7. Nanoparticles generated from the solvothermal treatment of the ONep/AM-DBP2 modified compounds (2, 5, 7) in comparison to their parent [M(ONep)4] were larger and had improved regularity and dispersion of the final ceramic nanomaterials.

6.
Inorg Chem ; 53(23): 12449-58, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25402557

RESUMEN

The synthesis and characterization of a series of group 4 carboxylate derivatives ([M(ORc)4] where M = Ti, Zr, Hf) was undertaken for potential utility as precursors to ceramic nanowires. The attempted syntheses of the [M(ORc)4] precursors were undertaken from the reaction of [M(OBu(t))4] with a select set of carboxylic acids (H-ORc where ORc = OPc (O2CCH(CH3)2), OBc (O2CC(CH3)3), ONc (O2CCH2C(CH3)3)). The products were identified by single-crystal X-ray diffraction studies as [Ti(η(2)-OBc)3(OBu(t))] (1), [Zr2(µ3-O)(µ-OPc)4(µ,η(2)-OPc)(η(2)-OPc)]2 (2), [H]2[Zr(η(2)-OBc)2(OBc)2(OBc)2] (3), [Zr(µ-ONc)2(η(2)-ONc)2]2 (4), or [Hf(µ-ORc)2(η(2)-ORc)2]2 [ORc = OPc (5), OBc (6, shown), ONc (7)]. The majority of compounds (4-7) were isolated as dinuclear species with a dodecahedral-like (CN-8) bonding mode around the metals due to chelation and bridging of the ORc ligand. The two monomers (1 and 3) were found to adopt a capped trigonal prismatic and CN-8 geometry, respectively, due to chelating ORc and terminal ORc or OBu(t) ligands. The metals of the oxo-species 2 were isolated in octahedral and CN-8 arrangements. These compounds were then processed by electrospinning methods (applied voltage 10 kV, flow rate 30-60 µL/min, electric field 0.5 kV/cm), and wire-like morphologies were isolated using compounds 4, 6 (shown), and 7.

7.
Inorg Chem ; 51(21): 12023-31, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23088334

RESUMEN

The coordination behavior of a set of (ethylenedioxy)diethanamine-based tetraphenol ligands with a series of Group 4 metal alkoxides ([M(OR)(4)]) was determined. The ligands were synthesized from a modified Mannich reaction and fully characterized as N,N,N',N'-tetrakis(3,5-tert-butyl-benzyl-2-hydroxy)-2,2'-(ethylenedioxy)diethanamine, termed H(4)-OEA-DBP(4) (1), and N,N,N',N'-tetrakis(3,5-chloro-benzyl-2-hydroxy)-2,2'-(ethylenedioxy)diethanamine, termed H(4)-OEA-DCP(4) (2). The reaction of 1 with a set of [M(OR)(4)] [M = Ti, Zr, or Hf; OR = iso-propoxide (OPr(i)), neo-pentoxide (ONep), or tert-butoxide (OBu(t))] precursors led to the isolation of [(OPr(i))(2)Ti](2)(µ-OEA-DBP(4)) (3), [(ONep)(2)Ti](2)(µ-OEA-DBP(4)) (4), and [(OBu(t))(2)M](2)(µ-OEA-DBP(4)) where M = Ti (5), Zr (6), or Hf (7). In addition, the [(ONep)(2)Ti](2)(µ-OEA-DCP(4)) (4a) derivative was isolated from the reaction of 2 and [Ti(ONep)(4)], demonstrating the similarity of coordination behavior between the two OEA-R(4) ligands. For 3-7, the metal center adopts a slightly distorted octahedral geometry by binding the two O atoms of the phenoxide moiety, as well as one N and one O atom from the OEA moieties, while retaining two of the original OR ligands. Solution NMR demonstrates inequivalent protons for the majority of the bound OEA ligands, which argues for retention of structure in solution. The synthesis and characterization of these compounds are presented in detail.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA